SNAS573D January   2012  – September 2021 LMK01801

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison
    1. 5.1 Functional Configurations
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Recommended Operating Conditions
    3. 7.3 Thermal Information
    4. 7.4 Electrical Characteristics
    5. 7.5 Serial MICROWIRE Timing Diagram
    6. 7.6 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Differential Voltage Measurement Terminology
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  High-Speed Clock Inputs (CLKin0/CLKin0* and CLKin1/CLKin1*)
      2. 9.3.2  Clock Distribution
      3. 9.3.3  Small Divider (1 to 8)
      4. 9.3.4  Large Divider (1 to 1045)
      5. 9.3.5  CLKout Analog Delay
      6. 9.3.6  CLKout0 to CLKout11 Digital Delay
      7. 9.3.7  CLKout12 and CLKout13 Digital Delay
      8. 9.3.8  Programmable Outputs
      9. 9.3.9  Clock Output Synchronization
      10. 9.3.10 Default Clock Outputs
    4. 9.4 Device Functional Modes
      1. 9.4.1 Programmable Mode
      2. 9.4.2 Pin Control Mode
      3. 9.4.3 Inputs / Outputs
        1. 9.4.3.1 CLKin0 and CLKin1
      4. 9.4.4 Input and Output Dividers
      5. 9.4.5 Fixed Digital Delay
        1. 9.4.5.1 Fixed Digital Delay - Example
      6. 9.4.6 Clock Output Synchronization (SYNC)
        1. 9.4.6.1 Dynamically Programming Digital Delay
          1. 9.4.6.1.1 Relative Dynamic Digital Delay
          2. 9.4.6.1.2 Relative Dynamic Digital Delay - Example
    5. 9.5 Programming
      1. 9.5.1 Recommended Programming Sequence
        1. 9.5.1.1 Overview
    6. 9.6 Register Map
      1. 9.6.1 Default Device Register Settings After Power On/Reset
      2. 9.6.2 Register R0
        1. 9.6.2.1 RESET
        2. 9.6.2.2 POWERDOWN
        3. 9.6.2.3 CLKoutX_Y_PD
          1. 9.6.2.3.1 CLKinX_BUF_TYPE
          2. 9.6.2.3.2 CLKinX_DIV
          3. 9.6.2.3.3 CLKinX_MUX
      3. 9.6.3 Register R1 and R2
        1. 9.6.3.1 CLKoutX_TYPE
      4. 9.6.4 Register R3
        1. 9.6.4.1 CLKout12_13_ADLY
        2. 9.6.4.2 CLKout12_13_HS, Digital Delay Half Shift
        3. 9.6.4.3 SYNC1_QUAL
        4. 9.6.4.4 SYNCX_POL_INV
        5. 9.6.4.5 NO_SYNC_CLKoutX_Y
        6. 9.6.4.6 CLKoutX_Y_OFFSET_PD
        7. 9.6.4.7 SYNCX_FAST
        8. 9.6.4.8 SYNCX_AUTO
      5. 9.6.5 Register R4
        1. 9.6.5.1 CLKout12_13_DDLY, Clock Channel Digital Delay
      6. 9.6.6 Register R5
        1. 9.6.6.1 CLKout12_ADLY_SEL[13], CLKout13_ADLY_SEL[14], Select Analog Delay
        2. 9.6.6.2 CLKoutX_Y_DIV Clock Output Divide
      7. 9.6.7 Register 15
        1. 9.6.7.1 uWireLock
  10. 10Application and Implementation
    1. 10.1 Typical Application
      1. 10.1.1 Detailed Design Procedure
        1. 10.1.1.1 Driving CLKin Inputs
          1. 10.1.1.1.1 Driving CLKin Pins With a Differential Source
          2. 10.1.1.1.2 Driving CLKin Pins With a Single-Ended Source
        2. 10.1.1.2 Termination and Use of Clock Output (Drivers)
          1. 10.1.1.2.1 Termination for DC-Coupled Differential Operation
          2. 10.1.1.2.2 Termination for AC-Coupled Differential Operation
          3. 10.1.1.2.3 Termination for Single-Ended Operation
  11. 11Power Supply Recommendations
    1. 11.1 Current Consumption
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Pin Connection Recommendations
        1. 12.1.1.1 Vcc Pins and Decoupling
        2. 12.1.1.2 Unused clock outputs
        3. 12.1.1.3 Unused clock inputs
        4. 12.1.1.4 Unused GPIO (CLKoutTYPE_X)
        5. 12.1.1.5 Bias
        6. 12.1.1.6 In MICROWIRE Mode
    2. 12.2 Thermal Management
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Termination for Single-Ended Operation

A balun can be used with either LVDS or LVPECL drivers to convert the balanced, differential signal into an unbalanced, single-ended signal.

It is possible to use an LVPECL driver as one or two separate 800 mVpp signals. When using only one LVPECL driver of a CLKoutX/CLKoutX* pair, be sure to properly terminated the unused driver. When DC coupling one of the LMK04800 family clock LVPECL drivers, the termination should be 50 Ω to VCC - 2 V as shown in Figure 10-12. The Thevenin equivalent circuit is also a valid termination as shown in Figure 10-13 for Vcc = 3.3 V.

GUID-5A433615-CC13-4423-8CA6-3CD6684CCC36-low.gifFigure 10-12 Single-Ended LVPECL Operation, DC Coupling
GUID-154A3284-987D-4956-8256-DE4E0368BA34-low.gifFigure 10-13 Single-Ended LVPECL Operation, DC Coupling, Thevenin Equivalent

When AC coupling an LVPECL driver use a 120 Ω to 240 Ω emitter resistor to provide a DC path to ground and ensure a 50 Ω termination with the proper DC bias level for the receiver. The typical DC bias voltage for LVPECL receivers is 2 V (See Section 10.1.1.2.2). If the companion driver is not used it should be terminated with either a proper AC or DC termination. This latter example of AC coupling a single-ended LVPECL signal can be used to measure single-ended LVPECL performance using a spectrum analyzer or phase noise analyzer. When using most RF test equipment no DC bias point (0 VDC) is required for safe and proper operation. The internal 50 Ω termination of the test equipment correctly terminates the LVPECL driver being measured as shown in Figure 10-14.

GUID-D31A096B-CF46-43D0-93BA-765991FADA84-low.gifFigure 10-14 Single-Ended LVPECL Operation, AC Coupling Rem=120 Ω to 240 Ω