SNAS703 April 2017 LMK04828-EP
PRODUCTION DATA.
MIN | MAX | UNIT | ||
---|---|---|---|---|
VCC | Supply voltage (1) | –0.3 | 3.6 | V |
VIN | Input voltage | –0.3 | (VCC + 0.3) | V |
TL | Lead temperature (solder 4 seconds) | 260 | °C | |
TJ | Junction temperature | 150 | °C | |
IIN | Differential input current (CLKinX/X*, OSCin/OSCin*, FBCLKin/FBCLKin*, Fin/Fin*) | ±5 | mA | |
MSL | Moisture sensitivity level | 3 | ||
Tstg | Storage temperature | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V |
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±250 | |||
Machine Model (MM) | ±150 |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
TJ | Junction temperature | 125 | °C | ||
TA | Ambient temperature | –55 | 25 | 105 | °C |
VCC | Supply voltage | 3.15 | 3.3 | 3.45 | V |
THERMAL METRIC(1) | LMK04828-EP | UNIT | |
---|---|---|---|
NKD (WQFN) | |||
64 PINS | |||
RθJA | Junction-to-ambient thermal resistance(2) | 24.3 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance(3) | 6.1 | °C/W |
RθJB | Junction-to-board thermal resistance(4) | 3.5 | °C/W |
ψJT | Junction-to-top characterization parameter(5) | 0.1 | °C/W |
ψJB | Junction-to-board characterization parameter(6) | 3.5 | °C/W |
RθJC(bot) | Junction-to-case (bottom) thermal resistance(7) | 0.7 | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
CURRENT CONSUMPTION | |||||||
ICC_PD | Power-down supply current | 1 | 3 | mA | |||
ICC_CLKS | Supply current(2) | 14 HSDS 8 mA clocks enabled PLL1 and PLL2 locked. |
565 | 670 | mA | ||
CLKin0/0*, CLKin1/1*, and CLKin2/2* INPUT CLOCK SPECIFICATIONS | |||||||
fCLKin | Clock input frequency | 0.001 | 750 | MHz | |||
SLEWCLKin | Clock input slew rate (3) | 20% to 80% | 0.15 | 0.5 | V/ns | ||
VIDCLKin | Differential clock input voltage(1)
See Figure 4 |
AC-coupled | 0.125 | 1.55 | |V| | ||
VSSCLKin | 0.25 | 3.1 | Vpp | ||||
VCLKin | Clock input Single-ended input voltage |
AC-coupled to CLKinX; CLKinX* AC-coupled to Ground CLKinX_TYPE = 0 (Bipolar) |
0.25 | 2.4 | Vpp | ||
AC-coupled to CLKinX; CLKinX* AC-coupled to Ground CLKinX_TYPE = 1 (MOS) |
0.35 | 2.4 | Vpp | ||||
|VCLKinX-offset| | DC offset voltage between CLKinX/CLKinX* (CLKinX* - CLKinX) |
Each pin is AC-coupled, CLKin0/1/2 CLKinX_TYPE = 0 (Bipolar) |
0 | |mV| | |||
Each pin is AC-coupled, CLKin0/1 CLKinX_TYPE = 1 (MOS) |
55 | |mV| | |||||
DC offset voltage between CLKin2/CLKin2* (CLKin2* - CLKin2) |
Each pin is AC-coupled CLKinX_TYPE = 1 (MOS) |
20 | |mV| | ||||
VCLKin- VIH | High input voltage | DC-coupled to CLKinX; CLKinX* AC-coupled to Ground CLKinX_TYPE = 1 (MOS) |
2 | VCC | V | ||
VCLKin– VIL | Low input voltage | 0 | 0.4 | V | |||
FBCLKin/FBCLKin* and Fin/Fin* INPUT SPECIFICATIONS | |||||||
fFBCLKin | Clock input frequency for 0-delay with external feedback. |
AC-coupled CLKinX_TYPE = 0 (Bipolar) |
0.001 | 750 | MHz | ||
fFin | Clock input frequency for external VCO mode |
AC-coupled (4)
CLKinX_TYPE = 0 (Bipolar) |
0.001 | 3100 | MHz | ||
Clock input frequency for distribution mode |
AC-coupled CLKinX_TYPE = 0 (Bipolar) |
0.001 | 3200 | ||||
VFBCLKin/Fin | Single-ended clock input voltage | AC-coupled CLKinX_TYPE = 0 (Bipolar) |
0.25 | 2 | Vpp | ||
SLEWFBCLKin/Fin | Slew rate on CLKin (3) | AC-coupled; 20% to 80%; (CLKinX_TYPE = 0) |
0.15 | 0.5 | V/ns | ||
PLL1 SPECIFICATIONS | |||||||
fPD1 | PLL1 phase detector frequency | 40 | MHz | ||||
ICPout1SOURCE | PLL1 charge pump source current (5) | VCPout1 = VCC/2, PLL1_CP_GAIN = 0 | 50 | µA | |||
VCPout1 = VCC/2, PLL1_CP_GAIN = 1 | 150 | ||||||
VCPout1 = VCC/2, PLL1_CP_GAIN = 2 | 250 | ||||||
… | … | ||||||
VCPout1 = VCC/2, PLL1_CP_GAIN = 14 | 1450 | ||||||
VCPout1 = VCC/2, PLL1_CP_GAIN = 15 | 1550 | ||||||
ICPout1SINK | PLL1 Charge pump sink current (5) | VCPout1=VCC/2, PLL1_CP_GAIN = 0 | –50 | µA | |||
VCPout1=VCC/2, PLL1_CP_GAIN = 1 | –150 | ||||||
VCPout1=VCC/2, PLL1_CP_GAIN = 2 | –250 | ||||||
… | … | ||||||
VCPout1=VCC/2, PLL1_CP_GAIN = 14 | –1450 | ||||||
VCPout1=VCC/2, PLL1_CP_GAIN = 15 | –1550 | ||||||
ICPout1%MIS | Charge pump sink / source mismatch | VCPout1 = VCC/2, T = 25 °C | 1% | 10% | |||
ICPout1VTUNE | Magnitude of charge pump current variation vs. charge pump voltage | 0.5 V < VCPout1 < VCC - 0.5 V TA = 25 °C |
4% | ||||
ICPout1%TEMP | Charge pump current vs. temperature variation | 4% | |||||
ICPout1TRI | Charge pump TRI-STATE leakage current | 0.5 V < VCPout < VCC - 0.5 V | 10 | nA | |||
PN10kHz | PLL 1/f Noise at 10-kHz offset. Normalized to 1-GHz Output Frequency | PLL1_CP_GAIN = 350 µA | –117 | dBc/Hz | |||
PLL1_CP_GAIN = 1550 µA | –118 | ||||||
PN1Hz | Normalized phase noise contribution | PLL1_CP_GAIN = 350 µA | –221.5 | dBc/Hz | |||
PLL1_CP_GAIN = 1550 µA | –223 | ||||||
PLL2 REFERENCE INPUT (OSCin) SPECIFICATIONS | |||||||
fOSCin | PLL2 reference input (7) | 500 | MHz | ||||
SLEWOSCin | PLL2 reference clock minimum slew rate on OSCin (3) | 20% to 80% | 0.15 | 0.5 | V/ns | ||
VOSCin | Input voltage for OSCin or OSCin* | AC-coupled; Single-ended (Unused pin AC-coupled to GND) |
0.2 | 2.4 | Vpp | ||
VIDOSCin | Differential voltage swing See Figure 4 |
AC-coupled | 0.2 | 1.55 | |V| | ||
VSSOSCin | 0.4 | 3.1 | Vpp | ||||
|VOSCin-offset| | DC offset voltage between OSCin/OSCin* (OSCinX* - OSCinX) |
Each pin is AC-coupled | 20 | |mV| | |||
fdoubler_max | Doubler input frequency (6) | EN_PLL2_REF_2X = 1(8); OSCin Duty Cycle 40% to 60% |
155 | MHz | |||
CRYSTAL OSCILLATOR MODE SPECIFICATIONS | |||||||
FXTAL | Crystal frequency range | Fundamental mode crystal ESR = 200 Ω (10 to 30 MHz) ESR = 125 Ω (30 to 40 MHz) |
10 | 40 | MHz | ||
CIN | Input capacitance of OSCin port | –40 to 85 °C | 1 | pF | |||
PLL2 PHASE DETECTOR and CHARGE PUMP SPECIFICATIONS | |||||||
fPD2 | Phase detector frequency (6) | 155 | MHz | ||||
ICPoutSOURCE | PLL2 charge pump source current (5) | VCPout2 = VCC/2, PLL2_CP_GAIN = 0 | 100 | µA | |||
VCPout2 = VCC/2, PLL2_CP_GAIN = 1 | 400 | ||||||
VCPout2 = VCC/2, PLL2_CP_GAIN = 2 | 1600 | ||||||
VCPout2 = VCC/2, PLL2_CP_GAIN = 3 | 3200 | ||||||
ICPoutSINK | PLL2 charge pump sink current (5) | VCPout2 = VCC/2, PLL2_CP_GAIN = 0 | –100 | µA | |||
VCPout2 = VCC/2, PLL2_CP_GAIN = 1 | –400 | ||||||
VCPout2 = VCC/2, PLL2_CP_GAIN = 2 | –1600 | ||||||
VCPout2 = VCC/2, PLL2_CP_GAIN = 3 | –3200 | ||||||
ICPout2%MIS | Charge pump sink/source mismatch | VCPout2 = VCC/2, TA = 25°C | 1% | 10% | |||
ICPout2VTUNE | Magnitude of charge pump current vs. charge pump voltage variation | 0.5 V < VCPout2 < VCC – 0.5 V | 4% | ||||
ICPout2%TEMP | Charge pump current vs. temperature variation | 4% | |||||
ICPout2TRI | Charge pump leakage | 0.5 V < VCPout2 < VCC – 0.5 V | 20 | nA | |||
PN10kHz | PLL 1/f noise at 10-kHz offset(9). Normalized to 1-GHz output frequency |
PLL2_CP_GAIN = 400 µA | –118 | dBc/Hz | |||
PLL2_CP_GAIN = 3200 µA | –121 | ||||||
PN1Hz | Normalized phase noise contribution(10) | PLL2_CP_GAIN = 400 µA | –222.5 | dBc/Hz | |||
PLL2_CP_GAIN = 3200 µA | –227 | ||||||
INTERNAL VCO SPECIFICATIONS | |||||||
fVCO | LMK04828-EP VCO tuning range | VCO0 | 2450 | 2755 | MHz | ||
VCO1 | 2875 | 3080 | |||||
KVCO | LMK04828-EP fine tuning sensitivity | VCO0 | Lower end | 17 | MHz/V | ||
Higher end | 27 | ||||||
VCO1 | Lower end | 17 | |||||
Higher end | 23 | ||||||
|ΔTCL| | Allowable temperature drift for continuous lock(11) | After programming for lock, no changes to output configuration are permitted to assure continuous lock. | 160 | °C | |||
NOISE FLOOR | |||||||
L(f)CLKout | LMK04828-EP, VCO0, noise floor 20-MHz offset (18) |
245.76 MHz | LVDS | –156.3 | dBc/Hz | ||
HSDS 6 mA | –158.4 | ||||||
HSDS 8 mA | –159.3 | ||||||
HSDS 10 mA | –158.9 | ||||||
LVPECL16 with 240 Ω | –161.6 | ||||||
LVPECL20 with 240 Ω | –162.5 | ||||||
LCPECL | –162.1 | ||||||
L(f)CLKout | LMK04828-EP, VCO1, noise floor 20-MHz offset (18) |
245.76 MHz | LVDS | –155.7 | dBc/Hz | ||
HSDS 6 mA | –157.5 | ||||||
HSDS 8 mA | –158.1 | ||||||
HSDS 10 mA | –157.7 | ||||||
LVPECL16 with 240 Ω | –160.3 | ||||||
LVPECL20 with 240 Ω | –161.1 | ||||||
LCPECL | –160.8 | ||||||
CLKout CLOSED LOOP PHASE NOISE SPECIFICATIONS A COMMERCIAL QUALITY VCXO(12) | |||||||
L(f)CLKout | LMK04828-EP VCO0 SSB phase noise (18) 245.76 MHz |
Offset = 1 kHz | –124.3 | dBc/Hz | |||
Offset = 10 kHz | –134.7 | ||||||
Offset = 100 kHz | –136.5 | ||||||
Offset = 1 MHz | –148.4 | ||||||
Offset = 10 MHz | LVDS | –156.4 | |||||
HSDS 8 mA | –159.1 | ||||||
LVPECL16 with 240 Ω | –160.8 | ||||||
L(f)CLKout | LMK04828-EP VCO1 SSB phase noise (18) 245.76 MHz |
Offset = 1 kHz | –124.2 | dBc/Hz | |||
Offset = 10 kHz | –134.4 | ||||||
Offset = 100 kHz | –135.2 | ||||||
Offset = 1 MHz | –151.5 | ||||||
Offset = 10 MHz | LVDS | –159.9 | |||||
HSDS 8 mA | –155.8 | ||||||
LVPECL16 with 240 Ω | –158.1 | ||||||
CLKout CLOSED LOOP JITTER SPECIFICATIONS A COMMERCIAL QUALITY VCXO(12) | |||||||
JCLKout | LMK04828-EP, VCO0 fCLKout = 245.76 MHz Integrated RMS jitter (18) |
LVDS, BW = 100 Hz to 20 MHz | 112 | fs rms | |||
LVDS, BW = 12 kHz to 20 MHz | 109 | ||||||
HSDS 8 mA, BW = 100 Hz to 20 MHz | 102 | ||||||
HSDS 8 mA, BW = 12 kHz to 20 MHz | 99 | ||||||
LVPECL16 with 240 Ω, BW = 100 Hz to 20 MHz |
98 | ||||||
LVPECL20 with 240 Ω, BW = 12 kHz to 20 MHz |
95 | ||||||
LCPECL with 240 Ω, BW = 100 Hz to 20 MHz |
96 | ||||||
LCPECL with 240 Ω, BW = 12 kHz to 20 MHz |
93 | ||||||
LMK04828-EP, VCO1 fCLKout = 245.76 MHz Integrated RMS jitter (18) |
LVDS, BW = 100 Hz to 20 MHz | 108 | fs rms | ||||
LVDS, BW = 12 kHz to 20 MHz | 105 | ||||||
HSDS 8 mA, BW = 100 Hz to 20 MHz | 98 | ||||||
HSDS 8 mA, BW = 12 kHz to 20 MHz | 94 | ||||||
LVPECL16 with 240 Ω, BW = 100 Hz to 20 MHz |
93 | ||||||
LVPECL20 with 240 Ω, BW = 12 kHz to 20 MHz |
90 | ||||||
LCPECL with 240 Ω, BW = 100 Hz to 20 MHz |
91 | ||||||
LCPECL with 240 Ω, BW = 12 kHz to 20 MHz |
88 | ||||||
DEFAULT POWER ON RESET CLOCK OUTPUT FREQUENCY | |||||||
fCLKout-start-up | Default output clock frequency at device power on (13) | LMK04828-EP | 315 | MHz | |||
fOSCout | OSCout frequency | See (6) | 500 | MHz | |||
CLOCK SKEW AND DELAY | |||||||
|TSKEW| | DCLKoutX to SDCLKoutY FCLK = 245.76 MHz, RL= 100 Ω AC-coupled (14) |
Same pair, same format(15)
SDCLKoutY_MUX = 0 (device clock) |
25 | |ps| | |||
Maximum DCLKoutX or SDCLKoutY to DCLKoutX or SDCLKoutY FCLK = 245.76 MHz, RL= 100 Ω AC-coupled |
Any pair, same format (15)
SDCLKoutY_MUX = 0 (device clock) |
50 | |||||
tsJESD204B | SYSREF to device clock setup time base reference. See SYSREF to Device Clock Alignment to adjust SYSREF to device clock setup time as required. |
SDCLKoutY_MUX = 1 (SYSREF) SYSREF_DIV = 30 SYSREF_DDLY = 8 (global) SDCLKoutY_DDLY = 1 (2 cycles, local) DCLKoutX_MUX = 1 (Div + DCC + HS) DCLKoutX_DIV = 30 DCLKoutX_DDLY_CNTH = 7 DCLKoutX_DDLY_CNTL = 6 DCLKoutX_HS = 0 SDCLKoutY_HS = 0 |
–80 | ps | |||
tPDCLKin0_ SDCLKout1 |
Propagation delay from CLKin0 to SDCLKout1 | CLKin0_OUT_MUX = 0 (SYSREF Mux) SYSREF_CLKin0_MUX = 1 (CLKin0) SDCLKout1_PD = 0 SDCLKout1_DDLY = 0 (Bypass) SDCLKout1_MUX = 1 (SR) EN_SYNC = 1 LVPECL16 with 240 Ω |
0.65 | ns | |||
fADLYmax | Maximum analog delay frequency | DCLKoutX_MUX = 4 | 1536 | MHz | |||
LVDS CLOCK OUTPUTS (DCLKoutX, SDCLKoutY, AND OSCout) | |||||||
VOD | Differential output voltage | T = 25°C, DC measurement AC-coupled to receiver input RL = 100-Ω differential termination |
395 | |mV| | |||
ΔVOD | Change in magnitude of VOD for complementary output states | –60 | 60 | mV | |||
VOS | Output offset voltage | 1.125 | 1.25 | 1.375 | V | ||
ΔVOS | Change in VOS for complementary output states | 35 | |mV| | ||||
TR / TF | Output rise time | 20% to 80%, RL = 100 Ω, 245.76 MHz | 180 | ps | |||
Output fall time | 80% to 20%, RL = 100 Ω | ||||||
ISA
ISB |
Output short-circuit current - single-ended | Single-ended output shorted to GND T = 25 °C |
–24 | 24 | mA | ||
ISAB | Output short-circuit current - differential | Complimentary outputs tied together | –12 | 12 | mA | ||
6-mA HSDS CLOCK OUTPUTS (DCLKoutX AND SDCLKoutY) | |||||||
VOH | T = 25 °C, DC measurement Termination = 50 Ω to VCC – 1.42 V |
VCC – 1.05 | |||||
VOL | VCC – 1.64 | ||||||
VOD | Differential output voltage | 590 | |mV| | ||||
ΔVOD | Change in VOD for complementary output states | –80 | 80 | mVpp | |||
8-mA HSDS CLOCK OUTPUTS (DCLKoutX AND SDCLKoutY) | |||||||
TR / T F | Output rise time | 245.76 MHz, 20% to 80%, RL = 100 Ω | 170 | ps | |||
Output fall time | 245.76 MHz, 80% to 20%, RL = 100 Ω | ||||||
VOH | DC measurement Termination = 50 Ω to VCC – 1.64 V |
VCC – 1.26 | |||||
VOL | VCC – 2.06 | ||||||
VOD | Differential output voltage | 800 | |mV| | ||||
ΔVOD | Change in VOD for complementary output states | –115 | 115 | mVpp | |||
10-mA HSDS CLOCK OUTPUTS (DCLKoutX AND SDCLKoutY) | |||||||
VOH | T = 25 °C, DC measurement Termination = 50 Ω to VCC – 1.43 V |
VCC – 0.99 | |||||
VOL | VCC – 1.97 | ||||||
VOD | 980 | mVpp | |||||
ΔVOD | Change in VOD for complementary output states | –115 | 115 | mVpp | |||
LVPECL CLOCK OUTPUTS (DCLKoutX AND SDCLKoutY) | |||||||
TR / TF | 20% to 80% output rise | RL = 100 Ω, emitter resistors = 240 Ω to GND DCLKoutX_TYPE = 4 or 5 (1600 or 2000 mVpp) |
150 | ps | |||
80% to 20% output fall time | |||||||
1600-mVpp LVPECL CLOCK OUTPUTS (DCLKoutX AND SDCLKoutY) | |||||||
VOH | Output high voltage | DC Measurement Termination = 50 Ω to VCC – 2 V |
VCC – 1.04 | V | |||
VOL | Output low voltage | VCC – 1.80 | V | ||||
VOD | Output voltage See Figure 5 |
760 | |mV| | ||||
2000-mVpp LVPECL CLOCK OUTPUTS (DCLKoutX AND SDCLKoutY) | |||||||
VOH | Output high voltage | DC Measurement Termination = 50 Ω to VCC – 2.3 V |
VCC – 1.09 | V | |||
VOL | Output low voltage | VCC – 2.05 | V | ||||
VOD | Output voltage See Figure 5 |
960 | |mV| | ||||
LCPECL CLOCK OUTPUTS (DCLKoutX AND SDCLKoutY) | |||||||
VOH | Output high voltage | DC Measurement Termination = 50 Ω to 0.5 V |
1.57 | V | |||
VOL | Output low voltage | 0.62 | V | ||||
VOD | Output voltage See Figure 5 |
950 | |mV| | ||||
LVCMOS CLOCK OUTPUTS (OSCout) | |||||||
fCLKout | Maximum frequency See (16) |
5-pF Load | 250 | MHz | |||
VOH | Output high voltage | 1-mA Load | VCC – 0.1 | V | |||
VOL | Output low voltage | 1-mA Load | 0.1 | V | |||
IOH | Output high current (source) | VCC = 3.3 V, VO = 1.65 V | 28 | mA | |||
IOL | Output low current (sink) | VCC = 3.3 V, VO = 1.65 V | 28 | mA | |||
DUTYCLK | Output duty cycle(17) | VCC/2 to VCC/2, FCLK = 100 MHz, T = 25°C |
50% | ||||
TR | Output rise time | 20% to 80%, RL = 50 Ω, CL = 5 pF | 400 | ps | |||
TF | Output fall time | 80% to 20%, RL = 50 Ω, CL = 5 pF | 400 | ps | |||
DIGITAL OUTPUTS (CLKin_SELX, Status_LDX, AND RESET/GPO) | |||||||
VOH | High-level output voltage | IOH = –500 µA CLKin_SELX_TYPE = 3 or 4 Status_LDX_TYPE = 3 or 4 RESET_TYPE = 3 or 4 |
VCC – 0.4 | V | |||
VOL | Low-level output voltage | IOL = 500 µA CLKin_SELX_TYPE = 3, 4, or 6 Status_LDX_TYPE = 3, 4, or 6 RESET_TYPE = 3, 4, or 6 |
0.4 | V | |||
DIGITAL OUTPUT (SDIO) | |||||||
VOH | High-level output voltage | IOH = –500 µA ; during SPI read. SDIO_RDBK_TYPE = 0 |
VCC – 0.4 | V | |||
VOL | Low-level output voltage | IOL = 500 µA ; during SPI read. SDIO_RDBK_TYPE = 0 or 1 |
0.4 | V | |||
DIGITAL INPUTS (CLKinX_SEL, RESET/GPO, SYNC, SCK, SDIO, OR CS*) | |||||||
VIH | High-level input voltage | 1.2 | VCC | V | |||
VIL | Low-level input voltage | 0.4 | V | ||||
DIGITAL INPUTS (CLKinX_SEL) | |||||||
IIH | High-level input current VIH = VCC |
CLKin_SELX_TYPE = 0, (high impedance) |
–5 | 5 | µA | ||
CLKin_SELX_TYPE = 1 (pullup) | –5 | 5 | |||||
CLKin_SELX_TYPE = 2 (pulldown) | 10 | 80 | |||||
IIL | Low-level input current VIL = 0 V |
CLKin_SELX_TYPE = 0, (high impedance) |
–5 | 5 | µA | ||
CLKin_SELX_TYPE = 1 (pullup) | –40 | –5 | |||||
CLKin_SELX_TYPE = 2 (pulldown) | –5 | 5 | |||||
DIGITAL INPUT (RESET/GPO) | |||||||
IIH | High-level input current VIH = VCC |
RESET_TYPE = 2 (pulldown) |
10 | 80 | µA | ||
IIL | Low-level input current VIL = 0 V |
RESET_TYPE = 0 (high impedance) | –5 | 5 | µA | ||
RESET_TYPE = 1 (pullup) | –40 | –5 | |||||
RESET_TYPE = 2 (pulldown) | –5 | 5 | |||||
DIGITAL INPUTS (SYNC) | |||||||
IIH | High-level input current | VIH = VCC | 25 | µA | |||
IIL | Low-level input current | VIL = 0 V | –5 | 5 | |||
DIGITAL INPUTS (SCK, SDIO, CS*) | |||||||
IIH | High-level input current | VIH = VCC | –5 | 5 | µA | ||
IIL | Low-level input current | VIL = 0 | –5 | 5 | µA | ||
DIGITAL INPUT TIMING | |||||||
tHIGH | RESET pin held high for device reset | 25 | ns |
MIN | NOM | MAX | UNIT | |||
---|---|---|---|---|---|---|
tds | Setup time for SDI edge to SCLK rising edge | See Figure 1 | 10 | ns | ||
tdH | Hold time for SDI edge from SCLK rising edge | See Figure 1 | 10 | ns | ||
tSCLK | Period of SCLK | See Figure 1 | 50(19) | ns | ||
tHIGH | High width of SCLK | See Figure 1 | 25 | ns | ||
tLOW | Low width of SCLK | See Figure 1 | 25 | ns | ||
tcs | Setup time for CS* falling edge to SCLK rising edge | See Figure 1 | 10 | ns | ||
tcH | Hold time for CS* rising edge from SCLK rising edge | See Figure 1 | 30 | ns | ||
tdv | SCLK falling edge to valid read back data | See Figure 1 | 20 | ns |
Register programming information on the SDIO pin is clocked into a shift register on each rising edge of the SCK signal. On the rising edge of the CS* signal, the register is sent from the shift register to the register addressed. A slew rate of at least 30 V/µs is recommended for these signals. After programming is complete the CS* signal should be returned to a high state. If the SCK or SDIO lines are toggled while the VCO is in lock, as is sometimes the case when these lines are shared with other parts, the phase noise may be degraded during this programming.
4-wire mode read back has the same timing as the SDIO pin.
R/W bit = 0 is for SPI write. R/W bit = 1 is for SPI read.
W1 and W0 is written as 0.
VCO_MUX = 0 (VCO0) | PLL2 Loop Filter Bandwidth = 344 kHz |
VCO0 = 2457.6 MHz | PLL2 Phase Margin = 73° |
DCLKout2_DIV = 10 |
VCO_MUX = 1 (VCO1) | PLL2 Loop Filter Bandwidth = 233 kHz |
VCO = 2949.12 MHz | PLL2 Phase Margin = 70° |
DCLKout2_DIV = 12 |