SNAS859 March   2024 LMK05318B-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1. 4.1 Device Start-Up Modes
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information: 4-Layer JEDEC Standard PCB
    5. 5.5 Thermal Information: 10-Layer Custom PCB
    6. 5.6 Electrical Characteristics
    7. 5.7 Timing Diagrams
    8. 5.8 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Output Clock Test Configurations
  8. Detailed Description
    1. 7.1 Overview
      1. 7.1.1 ITU-T G.8262 (SyncE) Standards Compliance
    2. 7.2 Functional Block Diagram
      1. 7.2.1 PLL Architecture Overview
      2. 7.2.2 DPLL Mode
      3. 7.2.3 APLL-Only Mode
    3. 7.3 Feature Description
      1. 7.3.1  Oscillator Input (XO_P/N)
      2. 7.3.2  Reference Inputs (PRIREF_P/N and SECREF_P/N)
      3. 7.3.3  Clock Input Interfacing and Termination
      4. 7.3.4  Reference Input Mux Selection
        1. 7.3.4.1 Automatic Input Selection
        2. 7.3.4.2 Manual Input Selection
      5. 7.3.5  Hitless Switching
        1. 7.3.5.1 Hitless Switching With 1-PPS Inputs
      6. 7.3.6  Gapped Clock Support on Reference Inputs
      7. 7.3.7  Input Clock and PLL Monitoring, Status, and Interrupts
        1. 7.3.7.1 XO Input Monitoring
        2. 7.3.7.2 Reference Input Monitoring
          1. 7.3.7.2.1 Reference Validation Timer
          2. 7.3.7.2.2 Amplitude Monitor
          3. 7.3.7.2.3 Frequency Monitoring
          4. 7.3.7.2.4 Missing Pulse Monitor (Late Detect)
          5. 7.3.7.2.5 Runt Pulse Monitor (Early Detect)
          6. 7.3.7.2.6 Phase Valid Monitor for 1-PPS Inputs
        3. 7.3.7.3 PLL Lock Detectors
        4. 7.3.7.4 Tuning Word History
        5. 7.3.7.5 Status Outputs
        6. 7.3.7.6 Interrupt
      8. 7.3.8  PLL Relationships
        1. 7.3.8.1  PLL Frequency Relationships
        2. 7.3.8.2  Analog PLLs (APLL1, APLL2)
        3. 7.3.8.3  APLL Reference Paths
          1. 7.3.8.3.1 APLL XO Doubler
          2. 7.3.8.3.2 APLL1 XO Reference (R) Divider
          3. 7.3.8.3.3 APLL2 Reference (R) Dividers
        4. 7.3.8.4  APLL Phase Frequency Detector (PFD) and Charge Pump
        5. 7.3.8.5  APLL Feedback Divider Paths
          1. 7.3.8.5.1 APLL1 N Divider With SDM
          2. 7.3.8.5.2 APLL2 N Divider With SDM
        6. 7.3.8.6  APLL Loop Filters (LF1, LF2)
        7. 7.3.8.7  APLL Voltage Controlled Oscillators (VCO1, VCO2)
          1. 7.3.8.7.1 VCO Calibration
        8. 7.3.8.8  APLL VCO Clock Distribution Paths (P1, P2)
        9. 7.3.8.9  DPLL Reference (R) Divider Paths
        10. 7.3.8.10 DPLL Time-to-Digital Converter (TDC)
        11. 7.3.8.11 DPLL Loop Filter (DLF)
        12. 7.3.8.12 DPLL Feedback (FB) Divider Path
      9. 7.3.9  Output Clock Distribution
      10. 7.3.10 Output Channel Muxes
      11. 7.3.11 Output Dividers (OD)
      12. 7.3.12 Clock Outputs (OUTx_P/N)
        1. 7.3.12.1 AC-Differential Output (AC-DIFF)
        2. 7.3.12.2 HCSL Output
        3. 7.3.12.3 1.8V LVCMOS Output
        4. 7.3.12.4 Output Auto-Mute During LOL
      13. 7.3.13 Glitchless Output Clock Start-Up
      14. 7.3.14 Clock Output Interfacing and Termination
      15. 7.3.15 Output Synchronization (SYNC)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Device Start-Up Modes
        1. 7.4.1.1 EEPROM Mode
      2. 7.4.2 PLL Operating Modes
        1. 7.4.2.1 Free-Run Mode
        2. 7.4.2.2 Lock Acquisition
        3. 7.4.2.3 Locked Mode
        4. 7.4.2.4 Holdover Mode
      3. 7.4.3 PLL Start-Up Sequence
      4. 7.4.4 Digitally-Controlled Oscillator (DCO) Mode
        1. 7.4.4.1 DCO Frequency Step Size
        2. 7.4.4.2 DCO Direct-Write Mode
    5. 7.5 Programming
      1. 7.5.1 Interface and Control
      2. 7.5.2 I2C Serial Communication
        1. 7.5.2.1 I2C Block Register Transfers
      3. 7.5.3 SPI Serial Communication
        1. 7.5.3.1 SPI Block Register Transfer
      4. 7.5.4 Register Map and EEPROM Map Generation
      5. 7.5.5 General Register Programming Sequence
      6. 7.5.6 EEPROM Programming Flow
        1. 7.5.6.1 EEPROM Programming Using Method #1 (Register Commit)
          1. 7.5.6.1.1 Write SRAM Using Register Commit
          2. 7.5.6.1.2 Program EEPROM
        2. 7.5.6.2 EEPROM Programming Using Method #2 (Direct Writes)
          1. 7.5.6.2.1 Write SRAM Using Direct Writes
          2. 7.5.6.2.2 User-Programmable Fields In EEPROM
      7. 7.5.7 Read SRAM
      8. 7.5.8 Read EEPROM
      9. 7.5.9 EEPROM Start-Up Mode Default Configuration
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Device Start-Up Sequence
      2. 8.1.2 Power Down (PDN) Pin
      3. 8.1.3 Power Rail Sequencing, Power Supply Ramp Rate, and Mixing Supply Domains
        1. 8.1.3.1 Mixing Supplies
        2. 8.1.3.2 Power-On Reset (POR) Circuit
        3. 8.1.3.3 Powering Up From a Single-Supply Rail
        4. 8.1.3.4 Power Up From Split-Supply Rails
        5. 8.1.3.5 Non-Monotonic or Slow Power-Up Supply Ramp
      4. 8.1.4 Slow or Delayed XO Start-Up
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
      1. 8.4.1 Power Supply Bypassing
      2. 8.4.2 Device Current and Power Consumption
        1. 8.4.2.1 Current Consumption Calculations
        2. 8.4.2.2 Power Consumption Calculations
        3. 8.4.2.3 Example
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
      3. 8.5.3 Thermal Reliability
        1. 8.5.3.1 Support for PCB Temperature up to 105°C
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 TICS Pro
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RGZ|48
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Electrical Characteristics

Over Recommended Operating Conditions (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
POWER SUPPLY CHARACTERISTICS
IDD_DIG Core Current Consumption
(VDD_DIG)
21 mA
IDD_IN Core Current Consumption
(VDD_IN)
43 mA
IDD_PLL1 Core Current Consumption
(VDD_PLL1)
DPLL and APLL1 enabled 110 mA
IDD_XO Core Current Consumption
(VDD_XO)
20 mA
IDD_PLL2 Core Current Consumption
(VDD_PLL2)
APLL2 disabled 18.5 mA
APLL2 enabled 120 mA
IDDO_x Output Current Consumption, per channel(3)
(VDDO_x)
Output mux and divider enabled, excludes driver
Divider value = 2 to 6
65 mA
Output mux and divider enabled, excludes driver
Divider value > 6
70 mA
AC-LVDS 11 mA
AC-CML 16 mA
AC-LVPECL 18 mA
HCSL, 50Ω load to GND 25 mA
1.8V LVCMOS (x2), 100MHz 4.7 mA
IDDPDN Total Current Consumption (all VDD and VDDO pins, 3.3V) Device powered-down (PDN pin held low) 56 75 mA
XO INPUT CHARACTERISTICS (XO)
fIN Input frequency range   10   100 MHz
VIN-SE Single-ended input voltage swing Single ended input, internal AC coupling 0.4   2.6 Vpp
VIN-DIFF Differential input peak to peak voltage swing(16) Differential input 0.4   2 Vpp
VID Differential input voltage swing(12) Differential input 0.2 1 |V|
dV/dt Input slew rate(14)   0.2 0.5   V/ns
IDC Input duty cycle   40   60 %
IIN Input leakage 50Ω and 100Ω internal terminations disabled –350   350 µA
REFERENCE INPUT CHARACTERISTICS (PRIREF, SECREF)
fIN Input frequency range Differential input(4) 5   800 MHz
LVCMOS input 1E–6   250 MHz
VIH Input high voltage DC-coupled input 1.8     V
VIL Input low voltage DC-coupled input   0.6 V
VIN-SE Single-ended input voltage swing AC-coupled input 0.4   2.6 Vpp
VIN-DIFF Differential input peak to peak voltage swing(16) Differential input,  VHYST = 50mV 0.4   2 Vpp
Differential input, ,VHYST = 200mV 0.7   2 Vpp
VID Differential input voltage swing(12) Differential input, VHYST = 50mV 0.2 1 V
Differential input, VHYST = 200mV 0.35 1 V
dV/dt Input slew rate(14)   0.2 0.5   V/ns
IIN Input leakage 50Ω and 100Ω internal terminations disabled –350   350 µA
VCO CHARACTERISTICS
fVCO1 VCO1 Frequency Range 2499.75 2500 2500.25 MHz
fVCO2 VCO2 Frequency Range 5500 6250 MHz
|ΔTCL| Allowable Temperature Drift for Continuous Lock After programming for lock, no changes to output configuration are permitted to provide continuous lock 125
APLL CHARACTERISTICS
fPD1 APLL1 Phase Detector Frequency 1 100 MHz
fPD2 APLL2 Phase Detector Frequency 12 150 MHz
tAPLL1-LOCK APLL1 lock time(13) Time between soft or hard reset and
 APLL1 output stable within ± 25ppm  fXO = 48MHz, fPD1 = fXO/2 
  1.0 ms
tAPLL2-LOCK APLL2 lock time(13) Time between soft or hard reset and
APLL2 output stable within ± 25ppm,  fXO = 48MHz, fPD2 = fXO/2 
  2.5 ms
Time between soft or hard reset and APLL2 output stable within ± 25ppm, fXO = 48MHz, fPD2 = fVCO1/18   2.5 ms
AC-LVDS OUTPUT CHARACTERISTICS (OUTx)
fOUT Output frequency(5)       1250 MHz
VOD Output voltage swing (VOH - VOL) 25MHz ≤ fOUT ≤ 800MHz; TYP at 156.25MHz 250 390 450 mV
 fOUT = 50MHz 285 400 450 mV
100MHz ≤ fOUT ≤ 200MHz 275 390 450 mV
fOUT = 312.5MHz 270 385 450 mV
fOUT = 625MHz 250 310 450 mV
fOUT = 1250MHz 280 mV
VOUT-DIFF Differential output voltage swing, peak-to-peak   2×VOD   Vpp
VOS Output common mode   100   430 mV
tSK Output-to-output skew Same post divider, output divide values, and output type     100 ps
tR/tF Output rise/fall time(13) 20% to 80%, < 300MHz   225 350 ps
± 100mV around center point, 300MHz ≤ fOUT ≤ 800MHz   85 250 ps
PNFLOOR Output phase noise floor fOUT = 156.25MHz;  fOFFSET > 10MHz   -160   dBc/Hz
ODC Output duty cycle(10)   45   55 %
AC-CML OUTPUT CHARACTERISTICS (OUTx)
fOUT Output frequency(5)       1250 MHz
VOD Output voltage swing (VOH - VOL) 25MHz ≤ fOUT ≤ 800MHz; TYP at fOUT = 156.25MHz 400 600 800 mV
fOUT = 50MHz 500 620 700 mV
100MHz ≤ fOUT ≤ 200MHz 490 600 690 mV
fOUT = 312.5MHz 480 580 680 mV
fOUT = 625MHz 350 460 600 mV
fOUT = 1250MHz 400 mV
VOUT-DIFF Differential output voltage swing, peak-to-peak   2×VOD   Vpp
VOS Output common mode   150   550 mV
tSK Output-to-output skew Same post divider, output divide values, and output type     100 ps
tR/tF Output rise/fall time(13) 20% to 80%, < 300MHz   225 300 ps
± 100mV around center point, 300MHz ≤ fOUT ≤ 800MHz   50 150 ps
PNFLOOR Output phase noise floor fOUT = 156.25MHz; fOFFSET > 10MHz   -160 dBc/Hz
ODC Output duty cycle(10)   45   55 %
AC-LVPECL OUTPUT CHARACTERISTICS (OUTx)
fOUT Output frequency(5)       1250 MHz
VOD Output voltage swing (VOH - VOL) 25MHz ≤ fOUT ≤ 800MHz; TYP at fOUT = 156.25MHz 450 780 1000 mV
fOUT = 50MHz 660 810 920 mV
100MHz ≤ fOUT ≤ 200MHz 640 780 900 mV
fOUT = 312.5MHz 620 740 880 mV
fOUT = 625MHz 500 620 760 mV
fOUT = 1250MHz 510 mV
VOUT-DIFF Differential output voltage swing, peak-to-peak   2×VOD   Vpp
VOS Output common mode   300   700 mV
tSK Output-to-output skew Same post divider, output divide values, and output type     100 ps
tR/tF Output rise/fall time(13) 20% to 80%, < 300MHz   200 300 ps
± 100mV around center point, 300MHz ≤ fOUT ≤ 800MHz   35 100 ps
PNFLOOR Output phase noise floor fOUT = 156.25MHz; fOFFSET > 10MHz   –162   dBc/Hz
ODC Output duty cycle(10) 45   55 %
HCSL OUTPUT CHARACTERISTICS (OUTx)
fOUT Output frequency(5)       625 MHz
VOH Output high voltage fOUT ≤ 400MHz 600   880 mV
fOUT = 625MHz 500   800 mV
VOL Output low voltage   –150   150 mV
tSK Output-to-output skew Same post divider, output divide values, and output type     100 ps
dV/dt Output slew rate(13) ±150mV around center point, fOUT ≤ 400MHz 1.6   4 V/ns
PNFLOOR Output phase noise floor (fOFFSET > 10MHz) 100MHz   –160   dBc/Hz
ODC Output duty cycle(10) 45 55 %
1.8V LVCMOS OUTPUT CHARACTERISTICS
fOUT Output frequency OUT4, OUT5, OUT6 or OUT7 1E–6   200 MHz
VOH Output high voltage IOH = 1mA 1.2     V
VOL Output low voltage IOL = 1mA     0.4 V
IOH Output high current     –23   mA
IOL Output low current   20   mA
tR/tF Output rise/fall time 20% to 80%   250   ps
tSK Output-to-output skew Same post divider, output divide values, and output type     100 ps
Output-to-output skew Same post divider, output divide values, LVCMOS-to-DIFF     1.5 ns
PNFLOOR Output phase noise floor fOUT = 66.66MHz; fOFFSET > 10MHz -160   dBc/Hz
ODC Output duty cycle(10)   45 55 %
ROUT Output impedance   50   Ω
3-LEVEL LOGIC INPUT CHARACTERISTICS (HW_SW_CTRL, GPIO1, REFSEL, STATUS[1:0])
VIH Input high voltage   1.4     V
VIM Input mid voltage Input floating with internal bias and PDN pulled low 0.7   0.9 V
VIL Input low voltage       0.4 V
IIH Input high current VIH = VDD –40   40 µA
IIL Input low current VIL = GND –40   40 µA
2-LEVEL LOGIC INPUT CHARACTERISTICS (PDN, GPIO[2:0], SDI, SCK, SCS)
VIH Input high voltage   1.2     V
VIL Input low voltage       0.6 V
IIH Input high current VIH = VDD -40   40 µA
IIL Input low current VIL = GND -40   40 µA
LOGIC OUTPUT CHARACTERISTICS (STATUS[1:0], SDO)
VOH Output high voltage IOH = 1mA 2.4 V
VOL Output low voltage IOL = 1mA 0.4 V
tR/tF Output rise/fall time 20% to 80%, LVCMOS mode, 1kΩ to GND   500   ps
SPI TIMING REQUIREMENTS (SDI, SCK, SCS, SDO)
fSCK SPI clock rate     20 MHz
SPI clock rate; NVM write 5 MHz
t1 SCS to SCK setup time   10   ns
t2 SDI to SCK setup time   10     ns
t3 SDI to SCK hold time   10     ns
t4 SCK high time   25     ns
t5 SCK low time   25     ns
t6 SCK to SDO valid read-back data     20 ns
t7 SCS pulse width   20     ns
t8 SDI to SCK hold time   10     ns
I2C-COMPATIBLE INTERFACE CHARACTERISTICS (SDA, SCL)
VIH Input high voltage   1.2     V
VIL Input low voltage        0.6 V
IIH Input leakage   –15   15 µA
VOL Output low voltage IOL = 3mA     0.3 V
fSCL I2C clock rate Standard     100 kHz
Fast mode     400
tSU(START) START condition setup time SCL high before SDA low 0.6     µs
tH(START) START condition hold time SCL low after SDA low 0.6     µs
tW(SCLH) SCL pulse width high   0.6     µs
tW(SCLL) SCL pulse width low   1.3     µs
tSU(SDA) SDA setup time   100     ns
tH(SDA) SDA hold time SDA valid after SCL low 0   µs
tR(IN) SDA/SCL input rise time       300 ns
tF(IN) SDA/SCL input fall time       300 ns
tF(OUT) SDA output fall time CBUS ≤ 400pF     300 ns
tSU(STOP) STOP condition setup time   0.6     µs
tBUS Bus free time between STOP and START   1.3     µs
POWER SUPPLY NOISE REJECTION (PSNR) / CROSSTALK SPURS
PSNR50mV Spur induced by power supply noise (VN = 50mVpp) (6)(7) VDD = 3.3V, VDDO_x = 3.3V, 156.25MHz, AC-DIFF output –83 dBc
VDD = 3.3V, VDDO_x = 3.3V, 156.25MHz, HCSL output –78 dBc
VDD = 3.3V, VDDO_x = 2.5V, 156.25MHz, AC-DIFF output -73 dBc
VDD = 3.3V, VDDO_x = 2.5V, 156.25 MHz, HCSL output -68 dBc
PSNR25mV Spur induced by power supply noise (VN = 25mVpp)(6)(7) VDD = 3.3V, VDDO_x = 1.8V, 156.25MHz, AC-DIFF output –63 dBc
VDD = 3.3V, VDDO_x = 1.8V, 156.25MHz, HCSL output –58 dBc
VDD = 3.3V, VDDO_x = 1.8V, 156.25MHz, LVCMOS output –45 dBc
SPURXTALK Spur level due to output-to-output crosstalk (adjacent channels)(7) fOUTx = 156.25MHz, fOUTy = 155.52MHz, AC –75 dBc
PLL CLOCK OUTPUT PERFORMANCE CHARACTERISTICS
RJ RMS Phase Jitter (12kHz to 20MHz) 625MHz AC-DIFF output from APLL1, fXO = 48MHz, fPD1 = fXO/2, fVCO1 = 2.5GHz 50 80 fs RMS
RJ RMS Phase Jitter (12kHz to 20MHz) 625MHz AC-DIFF output from APLL1, fXO = 48MHz, fPD1 = fXO/2, fVCO1 = 2.5GHz.  fVCO1 = 2.5GHz; VDDO = 3.3V, power supply ripple VN ≤ 50mV, 100kHz ≤ FN ≤ 10MHz 55 100 fs RMS
RJ RMS Phase Jitter (12kHz to 20MHz) 312.5MHz AC-DIFF output from APLL1, fXO = 48MHz, fPD1 = fXO/2, fVCO1 = 2.5GHz 50 80 fs RMS
RJ RMS Phase Jitter (12kHz to 20MHz) 312.5MHz AC-DIFF output from APLL1, fXO = 48MHz, fPD1 = fXO/2, fVCO1 = 2.5GHz.  fVCO1 = 2.5GHz; VDDO = 3.3V, power supply ripple VN ≤ 50mV, 100kHz ≤ FN ≤ 10MHz 55 110 fs RMS
RJ RMS Phase Jitter (12kHz to 20MHz) 156.25MHz AC-LVPECL output from APLL1, fXO = 48MHz, fPD1 = fXO/2, fVCO1 = 2.5GHz 60 90 fs RMS
RJ RMS Phase Jitter (12kHz to 20MHz) 156.25MHz AC-LVPECL output from APLL1, fXO = 48MHz, fPD1 = fXO/2, fVCO1 = 2.5GHz; VDDO = 3.3V, power supply ripple ≤ 50mV,  100kHz ≤ FN ≤ 10MHz 65 135 fs RMS
RJ RMS Phase Jitter (12kHz to 20MHz) excluding ouput crosstalk spurs 155.52MHz AC-LVPECL output from APLL2 at OUT4, OUT5, OUT6 and OUT7. 156.25MHz from APLL1 at all other outputs. fXO = 48MHz, fPD1 = fXO/2, fVCO1 = 2.5GHz, fPD2 = fVCO1/18, fVCO2 = 5.59872GHz 125 200 fs RMS
RJ RMS Phase Jitter (12kHz to 20MHz) 155.52MHz AC-LVPECL output from APLL2 at OUT4, OUT5, OUT6 and OUT7. 156.25MHz from APLL1 at all other outputs. fXO = 48MHz, fPD1 = fXO/2, fVCO1 = 2.5GHz, fPD2 = fVCO1/18, fVCO2 = 5.59872GHz 145 fs RMS
RJ RMS Phase Jitter (12kHz to 20MHz) excluding output crosstalk spurs 153.6MHz AC-LVPECL output from APLL2 at OUT4, OUT5, OUT6 and OUT7. 156.25MHz from APLL1 at all other outputs. fXO = 48MHz, fPD1 = fXO/2, fVCO1 = 2.5GHz, fPD2 = fVCO1/18, fVCO2 = 5.5296GHz 125 200 fs RMS
RJ RMS Phase Jitter (12kHz to 20MHz) 153.6MHz AC-LVPECL output from APLL2 at OUT4, OUT5, OUT6 and OUT7. 156.25MHz from APLL1 at all other outputs. fXO = 48MHz, fPD1 = fXO/2, fVCO1 = 2.5GHz, fPD2 = fVCO1/18, fVCO2 = 5.5296GHz 150 fs RMS
BW DPLL bandwidth range(8) Programmed bandwidth setting 0.01 4000 Hz
JPK DPLL closed-loop jitter peaking(11) fREF = 25MHz, fOUT = 10MHz, DPLL BW = 0.1Hz or 10Hz   0.1   dB
JTOL Jitter tolerance Jitter modulation = 10Hz, 25.78125Gbps 6455   UI p-p
tHITLESS Phase hit between two reference inputs with 0ppm error Valid for a single switchover event between two clock inputs at the same frequency ± 50 ps
fHITLESS Frequency transient during hitless switch Valid for a single switchover event between two clock inputs at the same frequency ± 10 ppb
Total device current can be estimated by summing the individual IDD_x and IDDO_x per pin for all blocks enabled in a given configuration.
Configuration A (All PLL blocks on except APLL2 is disabled): fREF = 25MHz, fXO = 48MHz, fVCO1 = 2.5GHz.
Configuration B (All PLL blocks on): fREF = 25MHz, fXO = 48.0048MHz, fVCO1 = 2.5GHz, fVCO2 = 5598.72GHz, PLL2_P1 = 3.
IDDO_x current for an operating output is the sum of mux, divider, and an output format.
For a differential input clock below 5MHz, TI recommends to disable the differential input amplitude monitor and enable at least one other monitor (frequency, window detectors) to validate the input clock.  Otherwise, consider using an LVCMOS clock for an input below 5MHz.
An output frequency over fOUT max spec is possible, but output swing can be less than VOD min specification.
PSNR is the single-sideband spur level (in dBc) measured when injecting sinusoidal noise with amplitude VN and frequency fN (between 100kHz and 1MHz) onto VDD and VDDO_x pins.
DJSPUR (ps pk-pk) = [2 × 10(dBc/20) / (π × fOUT) × 1E6], where dBc is the PSNR or SPUR level (in dBc) and fOUT is the output frequency (in MHz).
Actual loop bandwidth can be lower. The valid loop bandwidth range can be constrained by the DPLL TDC frequency used in a given configuration. 
Assumes VDD and VDDO_x supplies are ramped and XO input clock is stable in frequency and amplitude before the rising edge of PDN, PLLs start-up using serial calibration mode (PLL1 before PLL2), VCO wait timers set to 0.4ms, PLL wait timers set to 3ms, and outputs auto-mute during APLL lock only (DPLL auto-mute options disabled).
Parameter is specified for PLL outputs divided from either VCO domain.
DPLL closed-loop jitter peaking of 0.1dB or less is based on the DPLL bandwidth setting configured by the TICS Pro software tool.
Minimum limit applies for the minimum setting of the differential input amplitude monitor (xREF_LVL_SEL = 0).
Measured on the differential output waveform (OUTx_P - OUTx_N). Output with 2pF load.
To meet the jitter performance listed in the subsequent sections of this data sheet, the minimum recommended slew rate for all input clocks is 0.5V/ns. Phase noise performance begins to degrade as the clock input slew rate is reduced.  However, the device functions at slew rates down to the minimum listed.  When compared to single-ended clocks, differential clocks (LVDS, LVPECL) are less susceptible to degradation in phase noise performance at lower slew rates due to the common mode noise rejection. TI also recommended to use the highest possible slew rate for differential clocks to achieve optimal phase noise performance at the device outputs.