SNAS816B March   2022  – July 2022 LMK5B33216

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Diagrams
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Differential Voltage Measurement Terminology
    2. 7.2 Output Clock Test Configurations
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
      1. 8.2.1 PLL Architecture Overview
      2. 8.2.2 DPLL
        1. 8.2.2.1 Independent DPLL Operation
        2. 8.2.2.2 Cascaded DPLL Operation
        3. 8.2.2.3 APLL Cascaded With DPLL
      3. 8.2.3 APLL-Only Mode
    3. 8.3 Feature Description
      1. 8.3.1  Oscillator Input (XO)
      2. 8.3.2  Reference Inputs
      3. 8.3.3  Clock Input Interfacing and Termination
      4. 8.3.4  Reference Input Mux Selection
        1. 8.3.4.1 Automatic Input Selection
        2. 8.3.4.2 Manual Input Selection
      5. 8.3.5  Hitless Switching
        1. 8.3.5.1 Hitless Switching With Phase Cancellation
        2. 8.3.5.2 Hitless Switching With Phase Slew Control
        3. 8.3.5.3 Hitless Switching With 1-PPS Inputs
      6. 8.3.6  Gapped Clock Support on Reference Inputs
      7. 8.3.7  Input Clock and PLL Monitoring, Status, and Interrupts
        1. 8.3.7.1 XO Input Monitoring
        2. 8.3.7.2 Reference Input Monitoring
          1. 8.3.7.2.1 Reference Validation Timer
          2. 8.3.7.2.2 Frequency Monitoring
          3. 8.3.7.2.3 Missing Pulse Monitor (Late Detect)
          4. 8.3.7.2.4 Runt Pulse Monitor (Early Detect)
          5. 8.3.7.2.5 Phase Valid Monitor for 1-PPS Inputs
        3. 8.3.7.3 PLL Lock Detectors
        4. 8.3.7.4 Tuning Word History
        5. 8.3.7.5 Status Outputs
        6. 8.3.7.6 Interrupt
      8. 8.3.8  PLL Relationships
        1. 8.3.8.1  PLL Frequency Relationships
          1. 8.3.8.1.1 APLL Phase Detector Frequency
          2. 8.3.8.1.2 APLL VCO Frequency
          3. 8.3.8.1.3 DPLL TDC Frequency
          4. 8.3.8.1.4 DPLL VCO Frequency
          5. 8.3.8.1.5 Clock Output Frequency
        2. 8.3.8.2  Analog PLLs (APLL1, APLL2, APLL3)
        3. 8.3.8.3  APLL Reference Paths
          1. 8.3.8.3.1 APLL XO Doubler
          2. 8.3.8.3.2 APLL XO Reference (R) Divider
        4. 8.3.8.4  APLL Phase Frequency Detector (PFD) and Charge Pump
        5. 8.3.8.5  APLL Feedback Divider Paths
          1. 8.3.8.5.1 APLL N Divider With SDM
        6. 8.3.8.6  APLL Loop Filters (LF1, LF2, LF3)
        7. 8.3.8.7  APLL Voltage-Controlled Oscillators (VCO1, VCO2, VCO3)
          1. 8.3.8.7.1 VCO Calibration
        8. 8.3.8.8  APLL VCO Clock Distribution Paths
        9. 8.3.8.9  DPLL Reference (R) Divider Paths
        10. 8.3.8.10 DPLL Time-to-Digital Converter (TDC)
        11. 8.3.8.11 DPLL Loop Filter (DLF)
        12. 8.3.8.12 DPLL Feedback (FB) Divider Path
      9. 8.3.9  Output Clock Distribution
      10. 8.3.10 Output Channel Muxes
      11. 8.3.11 Output Dividers (OD)
      12. 8.3.12 SYSREF/1PPS
      13. 8.3.13 Output Delay
      14. 8.3.14 Clock Outputs (OUTx_P/N)
        1. 8.3.14.1 Differential Output
        2. 8.3.14.2 LVCMOS Output
        3. 8.3.14.3 SYSREF/1PPS Output Replication
        4. 8.3.14.4 Output Auto-Mute During LOL
      15. 8.3.15 Glitchless Output Clock Start-Up
      16. 8.3.16 Clock Output Interfacing and Termination
      17. 8.3.17 Output Synchronization (SYNC)
      18. 8.3.18 Zero-Delay Mode (ZDM) Synchronization
      19. 8.3.19 Time Elapsed Counter (TEC)
        1. 8.3.19.1 Configuring TEC Functionality
        2. 8.3.19.2 SPI as a Trigger Source
        3. 8.3.19.3 GPIO Pin as a TEC Trigger Source
          1. 8.3.19.3.1 An Example: Making a Time Elapsed Measurement Using TEC and GPIO1 as Trigger
        4. 8.3.19.4 TEC Timing
        5. 8.3.19.5 Other TEC Behavior
    4. 8.4 Device Functional Modes
      1. 8.4.1 Device Start-Up
        1. 8.4.1.1 ROM Selection
        2. 8.4.1.2 EEPROM Overlay
      2. 8.4.2 DPLL Operating States
        1. 8.4.2.1 Free-Run
        2. 8.4.2.2 Lock Acquisition
        3. 8.4.2.3 DPLL Locked
        4. 8.4.2.4 Holdover
      3. 8.4.3 PLL Start-Up Sequence
      4. 8.4.4 Digitally-Controlled Oscillator (DCO) Frequency and Phase Adjustment
        1. 8.4.4.1 DPLL DCO Control
          1. 8.4.4.1.1 DPLL DCO Relative Adjustment Frequency Step Size
          2. 8.4.4.1.2 APLL DCO Frequency Step Size
      5. 8.4.5 APLL Frequency Control
      6. 8.4.6 Zero-Delay Mode Synchronization
    5. 8.5 Programming
      1. 8.5.1 Interface and Control
      2. 8.5.2 I2C Serial Interface
        1. 8.5.2.1 I2C Block Register Transfers
      3. 8.5.3 SPI Serial Interface
        1. 8.5.3.1 SPI Block Register Transfer
      4. 8.5.4 Register Map Generation
      5. 8.5.5 General Register Programming Sequence
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Device Start-Up Sequence
      2. 9.1.2 Power Down (PD#) Pin
      3. 9.1.3 Strap Pins for Start-Up
      4. 9.1.4 Pin States
      5. 9.1.5 ROM and EEPROM
      6. 9.1.6 Power Rail Sequencing, Power Supply Ramp Rate, and Mixing Supply Domains
        1. 9.1.6.1 Power-On Reset (POR) Circuit
        2. 9.1.6.2 Powering Up From a Single-Supply Rail
        3. 9.1.6.3 Power Up From Split-Supply Rails
        4. 9.1.6.4 Non-Monotonic or Slow Power-Up Supply Ramp
      7. 9.1.7 Slow or Delayed XO Start-Up
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Do's and Don'ts
    4. 9.4 Power Supply Recommendations
      1. 9.4.1 Power Supply Bypassing
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
      3. 9.5.3 Thermal Reliability
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Development Support
        1. 10.1.1.1 Clock Tree Architect Programming Software
        2. 10.1.1.2 Texas Instruments Clocks and Synthesizers (TICS) Pro Software
        3. 10.1.1.3 PLLatinum™ Simulation Tool
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Glossary
    7. 10.7 Electrostatic Discharge Caution
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The LMK5B33216 has 2 reference inputs, 3 digital PLLs (DPLLs), 3 analog PLLs (APLLs) with integrated VCOs, and 16 output clocks. APLL3 uses an ultra-high performance BAW VCO (VCBO) with a very high quality factor, and thus minimizes dependency on the phase noise or frequency of the external oscillator (XO) input clock. TI's VCBO technology reduces the overall solution cost to meet the free-run and holdover frequency stability requirements. An XO, TCXO, or OCXO should be selected based on system holdover stability requirements. Each APLL can be controlled by the corresponding DPLL, allowing the APLL domain to be locked to the DPLL reference input for synchronous clock generation. Each APLL can select a reference from XO port or another APLL divided clock. Each DPLL can select a synchronization input reference from reference inputs INx or align to another APLL domain by selecting feedback from one of the cascade dividers.

The DPLL reference input mux supports automatic input selection based on priority and reference signal monitoring criteria. Manual input selection is also possible through software or pin control. The device provides hitless switching between reference sources with proprietary phase cancellation and phase slew control for superior phase transient performance. The reference clock input monitoring block monitors the clock inputs and will perform a hitless switchover or holdover when a loss of reference (LOR) is detected. A LOR condition will be detected upon any violation of the threshold limits set for the input monitors, which include frequency, missing and early pulse, runt pulse, and 1-PPS (pulse-per-second) detectors. The threshold limits for each input detector can be set and enabled per reference clock input. The tuning word history monitor feature determines the initial output frequency accuracy upon entry into holdover based on the historical average frequency when locked, thereby minimizing the frequency and phase disturbance during a LOR condition.

The LMK5B33216 has sixteen outputs with programmable output driver types, allowing up to sixteen differential clocks, or a combination of differential and single-ended clocks. Up to four single-ended 1.8-V or 2.65-V LVCMOS clocks (each from _P and _N outputs from OUT0 and OUT1). Each output clock derives from one of the supported APLL/VCO domains through the output muxes. Output 0 (OUT0) and Output 1 (OUT1) are the most flexible and may select their source from the XO, reference input, or any APLL domain. A 1-PPS output can be supported on Output 0 (OUT0) and Output 1 (OUT1). The output dividers have a SYNC feature to allow multiple outputs to be phase-aligned. Deterministic phase alignment can also be achieved through the zero-delay mode (ZDM) synchronization. ZDM achieve a deterministic phase alignment between a clock from any DPLL presented to OUT0 and the selected reference input. ZDM feedback paths are also available on OUT10 for DPLL3 and OUT4 for DPLL2.

To support IEEE 1588 PTP secondary clock or other clock steering applications, the DPLL supports DCO mode with less than 1-ppt (part per trillion) frequency resolution for precise frequency and phase adjustment through software or pin control.

The device is fully programmable through I2C or SPI and supports start-up frequency configuration with factory pre-programmed internal ROM pages. A programmable EEPROM overlay, which allows POR configuration of registers related to APLL and output configuration, provides flexible power up output clocks. Internal LDO regulators provide excellent PSNR to reduce the cost and complexity of the power delivery network. The clock input and PLL monitoring status are visible through the GPIO status pins and interrupt registers readback for full diagnostic capability.