SNOSAT7G August   2007  – October 2015 LMP7300

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics: 2.7-V
    6. 6.6 Electrical Characteristics: 5-V
    7. 6.7 Electrical Characteristics: 12-V
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Voltage Reference
      2. 7.3.2 Comparator
        1. 7.3.2.1 Output Stage
        2. 7.3.2.2 Fault Detection Rate
      3. 7.3.3 Hysteresis
        1. 7.3.3.1 How Much Hysteresis Is Correct?
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Window Comparator
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 Precision High-Temperature Switch
        1. 8.2.2.1 Design Requirements
      3. 8.2.3 Micropower Precision-Battery Low-Voltage Detector
        1. 8.2.3.1 Design Requirements
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 Evaluation Boards
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(1)
MIN MAX UNIT
VIN differential ±VS V
Supply voltage (VS = V+ – V) 13.6 V
Voltage at input/output pins V+ + 0.3 V − 0.3 V
Soldering information Infrared or convection (20 s) 235 °C
Wave soldering lead temperature (10 s) 260 °C
Junction temperature, TJ(2) 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±250
Machine model ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)
MIN NOM MAX UNIT
Temperature(2) –40 125 °C
Supply Voltage (VS = V+ – V) 2.7 12 V
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics Tables.
(2) The maximum power dissipation is a function of TJ(MAX), θJA. The maximum allowable power dissipation at any ambient temperature is PD = (TJ(MAX) – TA)/θJA. All numbers apply for packages soldered directly onto a PC Board.

6.4 Thermal Information

THERMAL METRIC(1) LMP7300 UNIT
DGK (VSSOP) D (SOIC)
8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance(2) 175.5 121.2 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 66.1 67.5 °C/W
RθJB Junction-to-board thermal resistance 95.6 61.5 °C/W
ψJT Junction-to-top characterization parameter 10 18.3 °C/W
ψJB Junction-to-board characterization parameter 94.2 61 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953..
(2) The maximum power dissipation is a function of TJ(MAX), θJA. The maximum allowable power dissipation at any ambient temperature is PD = (TJ(MAX) – TA)/ θJA. All numbers apply for packages soldered directly onto a PC Board.

6.5 Electrical Characteristics: 2.7-V

Unless otherwise specified, all limits are ensured for TA = 25°C, V+ = 2.7 V, V = 0 V, and VCM = V+/2, RPULLUP = 100 kΩ, CLOAD = 10 pF.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IS Supply Current RPULLUP = Open TA = 25°C 9 12 μA
TJ = TA 17
COMPARATOR
VOS Input Offset Voltage VCM = V+/2 SOIC TA = 25°C ±0.07 ±0.75 mV
TJ = TA ±2
VCM = V+/2 VSSOP TA = 25°C ±0.07 ±1 mV
TJ = TA ±2.2
TCVOS Input Offset Average Drift See(6) 1.8 μV/°C
IB Input Bias Current(5) |VID| < 2.5 V TA = 25°C 1.2 3 nA
TJ = TA 4
IOS Input Offset Current 0.15 0.5 nA
CMRR Common Mode Rejection Ratio 1 V < VCM < 2.7 V 80 100 dB
PSRR Power Supply Rejection Ratio V+ = 2.7 V to 12 V 80 100 dB
VOL Output Low Voltage ILOAD = 10 mA TA = 25°C 0.25 0.4 V
TJ = TA 0.5
ILEAK Output Leakage Current Comparator Output in High State 1 pA
HCLIN Hysteresis Control Voltage Linearity 0 < Ref-HYSTP,N < 25 mV 1 mV/V
25 mV < Ref-HYSTP,N < 100 mV 0.950
IHYS Hysteresis Leakage Current TA = 25°C 1.2 3 nA
TJ = TA 4
TPD Propagation Delay
(High to Low)
Overdrive = 10 mV, CL = 10 pF 12 17 μs
Overdrive = 100 mV, CL = 10 pF 4.5 7.6
REFERENCE
VO Reference Voltage SOIC 2.043 2.048 2.053 V
VSSOP 2.043 2.048 2.056 V
Line Regulation VCC = 2.7 V to 12 V 14 80 μV/V
Load Regulation IOUT = 0 to 1 mA 0.2 0.5 mV/mA
TCVREF/°C Temperature Coefficient −40°C to 125°C 55 ppm/°C
VN Output Noise Voltage 0.1 Hz to 10 Hz 80 μVPP
10 Hz to 10 kHz 100 μVRMS

6.6 Electrical Characteristics: 5-V

Unless otherwise specified, all limits are ensured for TA = 25°C, V+ = 5 V, V = 0 V, and VCM = V+/2, RPULLUP = 100 kΩ,
CLOAD = 10 pF. (2)
PARAMETER TEST CONDITIONS MIN(4) TYP(3) MAX(4) UNIT
IS Supply Current RPULLUP = Open TA = 25°C 10 13 μA
TJ = TA 18
COMPARATOR
VOS Input Offset Voltage VCM = V+/2  SOIC TA = 25°C ±0.07 ±0.75 mV
TJ = TA ±2
VCM = V+/2  VSSOP TA = 25°C ±0.07 ±1 mV
TJ = TA ±2.2
TCVOS Input Offset Average Drift See(6) 1.8 μV/°C
IB Input Bias Current(5) |VID| < 2.5 V TA = 25°C 1.2 3 nA
TJ = TA 4
IOS Input Offset Current 0.15 0.5 nA
CMRR Common Mode Rejection Ratio 1 ≤ VCM ≤ 5 V 80 100 dB
PSRR Power Supply Rejection Ratio V+ = 2.7 V to 12 V 80 100 dB
VOL Output Voltage Low ILOAD = 10 mA 0.25 0.4 V
ILEAK Output Leakage Current Comparator Output in High State 1 pA
HCLIN Hysteresis Control Voltage Linearity 0 < Ref-VHYSTP,N < 25 mV 1 mV/V
25 mV < Ref-VHYSTP,N < 100 mV 0.950
IHYS Hysteresis Leakage Current TA = 25°C 1.2 3 nA
TJ = TA 4
TPD Propagation Delay
(High to Low)
Overdrive = 10 mV, CL = 10 pF 12 15 μs
Overdrive = 100 mV, CL = 10 pF 4 7
REFERENCE
VO Reference Voltage SOIC 2.043 2.048 2.053 V
VSSOP 2.043 2.048 2.056 V
Line Regulation VCC = 2.7 V to 12 V 14 80 μV/V
Load Regulation IOUT = 0 to 1 mA 0.2 0.5 mV/mA
TCVREF/°C Temperature Coefficient −40°C to 125°C 55 ppm/°C
VN Output Noise Voltage 0.1 Hz to 10 Hz 80 μVPP
10 Hz to 10 kHz 100 μVRMS

6.7 Electrical Characteristics: 12-V

Unless otherwise specified, all limits are ensured for TA = 25°C, V+ = 12 V, V = 0 V, and VCM = V+/2, RPULLUP = 100 kΩ,
CLOAD = 10 pF. (2)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IS Supply Current RPULLUP = Open TA = 25°C 11 14 µA
TJ = TA 20
COMPARATOR
VOS Input Offset Voltage VCM = V+/2 SOIC TA = 25°C ±0.08 ±0.75 mV
TJ = TA ±2
VCM = V+/2 VSSOP TA = 25°C ±0.08 ±1 mV
TJ = TA ±2.2
TCVOS Input Offset Average Drift See(6) 1.8 μV/°C
IB Input Bias Current(5) |VID| > 2.5 V TA = 25°C 1.2 3 nA
TJ = TA 4
IOS Input Offset Current 0.15 0.5 nA
CMRR Common Mode Rejection Ratio 1 V ≤ VCM ≤ 12 V 80 100 dB
PSRR Power Supply Rejection Ratio V+ = 2.7 V to 12 V 80 100 dB
VOL Output Voltage Low ILOAD = 10 mA 0.25 0.4 V
ILEAK Output Leakage Current Comparator Output in High State 1 pA
HCLIN Hysteresis Control Voltage Linearity 0 < Ref-V+HYSTP, N < 25 mV 1 mV/V
25 mV < Ref-V+HYSTP, N < 100 mV 0.95
IHYS Hysteresis Leakage Current TA = 25°C 1.2 3 nA
TJ = TA 4
TPD Propagation Delay
(High to Low)
Overdrive = 10 mV, CL = 10 pF 11 15 μs
Overdrive = 100 mV, CL = 10 pF 3.5 6.8
REFERENCE
VO Reference Voltage TJ = 25°C SOIC 2.043 2.048 2.053 V
TJ = 25°C VSSOP 2.043 2.048 2.056 V
Line Regulation VCC = 2.7 V to 12 V 14 80 μV/V
Load Regulation IOUT = 0 to 1 mA 0.2 0.5 mV/mA
TCVREF/°C Temperature Coefficient −40°C to 125°C 55 ppm/°C
VN Output Noise Voltage 0.1 Hz to 10 Hz 80 μVPP
10 Hz to 10 kHz 100 μVRMS
(1) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
(2) Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No ensured specification of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ > TA.
(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not ensured on shipped production material.
(4) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlations using statistical quality control (SQC) method.
(5) Positive current corresponds to current flowing into the device.
(6) Offset voltage average drift determined by dividing the change in VOS at temperature extremes, by the total temperature change.

6.8 Typical Characteristics

LMP7300 20175639.gif
Figure 1. Supply Current vs Supply Voltage
LMP7300 20175633.gif
Figure 3. Output Low Voltage vs Load Current
LMP7300 20175635.gif
Figure 5. Reference Voltage vs Supply Voltage
LMP7300 20175637.gif
Figure 7. Reference Voltage vs Sink Current
LMP7300 20175640.gif
Figure 9. Propagation Delay vs Overdrive Voltage
LMP7300 20175642.gif
Figure 11. Propagation Delay vs Overdrive Voltage
LMP7300 20175632.gif
Figure 2. Output Low Voltage vs Load Current
LMP7300 20175634.gif
Figure 4. Output Low Voltage vs Load Current
LMP7300 20175636.gif
Figure 6. Reference Voltage vs Source Current
LMP7300 20175638.gif
Figure 8. Reference Voltage vs Source Current
LMP7300 20175641.gif
Figure 10. Propagation Delay vs Overdrive Voltage