SNVS731B September   2011  – June 2019 LMR12010

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Typical Application
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Descriptions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Recommended Operating Ratings
    3. 6.3 Electrical Characteristics
    4. 6.4 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Boost Function
      2. 7.3.2 Enable Pin / Shutdown Mode
      3. 7.3.3 Soft Start
      4. 7.3.4 Output Overvoltage Protection
      5. 7.3.5 Undervoltage Lockout
      6. 7.3.6 Current Limit
      7. 7.3.7 Thermal Shutdown
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1.      Typical Application
      2. 8.2.1 Detailed Design Procedure
        1. 8.2.1.1 Custom Design With WEBENCH® Tools
        2. 8.2.1.2 Inductor Selection
        3. 8.2.1.3 Input Capacitor
        4. 8.2.1.4 Output Capacitor
        5. 8.2.1.5 Catch Diode
        6. 8.2.1.6 Boost Diode
        7. 8.2.1.7 Boost Capacitor
        8. 8.2.1.8 Output Voltage
        9. 8.2.1.9 Calculating Efficiency, and Junction Temperature
      3. 8.2.2 Application Curves
  9. Layout
    1. 9.1 Layout Considerations
    2. 9.2 Calculating The LMR12010 Junction Temperature
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
      2. 10.1.2 Development Support
        1. 10.1.2.1 Custom Design With WEBENCH® Tools
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Community Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DDC|6
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Soft Start

This function forces VOUT to increase at a controlled rate during start up. During soft start, the error amplifier’s reference voltage ramps from 0V to its nominal value of 0.8 V in approximately 200 µs. This forces the regulator output to ramp up in a more linear and controlled fashion, which helps reduce inrush current. Under some circumstances at start-up, an output voltage overshoot may still be observed. This may be due to a large output load applied during start up. Large amounts of output external capacitance can also increase output voltage overshoot. A simple solution is to add a feed forward capacitor with a value between 470 pf and 1000 pf across the top feedback resistor (R1).