SNIS189D June   2015  – June 2018 LMT01

PRODUCTION DATA.  

  1. Features
  2. Applications
    1.     LMT01 Accuracy
  3. Description
    1.     2-Pin IC Temperature Sensor
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Electrical Characteristics - TO-92/LPG Pulse Count to Temperature LUT
    7. 6.7  Electrical Characteristics - WSON/DQX Pulse Count to Temperature LUT
    8. 6.8  Switching Characteristics
    9. 6.9  Timing Diagram
    10. 6.10 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Output Interface
      2. 7.3.2 Output Transfer Function
      3. 7.3.3 Current Output Conversion to Voltage
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Mounting, Temperature Conductivity, and Self-Heating
    2. 8.2 Typical Application
      1. 8.2.1 3.3-V System VDD MSP430 Interface - Using Comparator Input
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Setting the MSP430 Threshold and Hysteresis
        3. 8.2.1.3 Application Curves
    3. 8.3 System Examples
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Setting the MSP430 Threshold and Hysteresis

The comparator hysteresis determines the noise level that the signal can support without causing the comparator to trip falsely and resulting in an inaccurate pulse count. The comparator hysteresis is set by the precision of the MSP430 and what thresholds it is capable of. For this case, as the input signal transitions high, the comparator threshold is dropped by 77 mV. If the noise on the signal is kept below this level as it transitions, the comparator will not trip falsely. In addition, the MSP430 has a digital filter on the COMP_B output that be used to further filter output transitions that occur too quickly.