The LMV116 (single) rail-to-rail output voltage feedback amplifiers offer high-speed (45 MHz), and low-voltage operation (2.7 V) in addition to micro-power shutdown capability (LMV118).
Output voltage range extends to within 20 mV of either supply rail, allowing wide dynamic range especially in low voltage applications. Even with low supply current of 600 μA, output current capability is kept at a respectable ±20 mA for driving heavier loads. Important device parameters such as BW, slew rate, and output current are kept relatively independent of the operating supply voltage by a combination of process enhancements and design architecture.
For portable applications, the LMV118 provides shutdown capability while keeping the turnoff current to 15 μA. Both turnon and turnoff characteristics are well behaved with minimal output fluctuations during transitions, thus the device can be used in power-saving mode, as well as multiplexing applications. Miniature packages (5-pin and 6-pin SOT-23) are further means to ease the adoption of these low-power, high-speed devices in applications where board area is at a premium.
PART NUMBER | PACKAGE | BODY SIZE (NOM) |
---|---|---|
LMV116 | SOT-23 (5) | 2.90 mm × 1.60 mm |
SOT-23 (6) | 2.90 mm × 1.60 mm | |
LMV118 | SOT-23 (5) | 2.90 mm × 1.60 mm |
SOT-23 (6) | 2.90 mm × 1.60 mm |
Changes from B Revision (May 2013) to C Revision
Changes from A Revision (May 2013) to B Revision
PIN | I/O | DESCRIPTION | ||
---|---|---|---|---|
NAME | LMV116 | LMV118 | ||
+IN | 3 | 3 | Input | Non-inverting input |
–IN | 4 | 4 | Input | Inverting input |
OUTPUT | 1 | 1 | Output | Output |
SD | — | 5 | Input | Shutdown input. Active high, must be tied to V– with resistor for normal operation. |
V+ | 5 | 6 | Power | Positive (highest) power supply |
V– | 2 | 2 | Power | Negative (lowest) power supply |
MIN | MAX | UNIT | ||
---|---|---|---|---|
Supply voltage (V+ - V−) | 12.6 | V | ||
Voltage at INPUT and OUTPUT pins | V− −0.8 | V+ + 0.8 | V | |
Output short-circuit duration | See(3), (4) | |||
Junction temperature(5) | 150 | °C | ||
Soldering information | Infrared or convection (20 seconds) | 235 | °C | |
Wave soldering lead temperature (10 seconds) | 260 | °C | ||
Storage temperature, Tstg | –65 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V |
Machine model | ±200 |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
Supply voltage (V+ – V−) | 2.5 | 12 | V | ||
Temperature(1) | −40 | 85 | °C |
THERMAL METRIC(1) | LMV116 | LMV118 | UNIT | |
---|---|---|---|---|
DBV (SOT-23) | DBV (SOT-23) | |||
5 PINS | 6 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 182.7 | 182.7 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 139.9 | 139.9 | °C/W |
RθJB | Junction-to-board thermal resistance | 41.4 | 41.4 | °C/W |
ψJT | Junction-to-top characterization parameter | 28.5 | 28.5 | °C/W |
ψJB | Junction-to-board characterization parameter | 40.9 | 40.9 | °C/W |
PARAMETER | TEST CONDITIONS | MIN(1) | TYP(2) | MAX(1) | UNIT | |
---|---|---|---|---|---|---|
VOS | Input offset voltage | 0 V ≤ VCM ≤ 1.7 V | ±1 | ±5 | mV | |
0 V ≤ VCM ≤ 1.7 V –40°C to 85°C |
±6 | |||||
TC VOS | Input offset average drift | See(3) | ±5 | μV/C | ||
IB | Input bias current | See(4) | −2 | −0.4 | μA | |
See(4), –40°C to 85°C | –2.2 | |||||
IOS | Input offset current | 1 | 500 | nA | ||
CMRR | Common mode rejection ratio | VCM stepped from 0 V to 1.55 V | 73 | 88 | dB | |
PSRR | Power supply rejection ratio | V+ = 2.7 V to 3.7 V or V− = 0 V to −1 V | 72 | 85 | dB | |
RIN | Common mode input resistance | 3 | MΩ | |||
CIN | Common mode input capacitance | 2 | pF | |||
CMVR | Input common-mode voltage range | CMRR ≥ 50 dB | −0.3 | 1.7 | V | |
CMRR ≥ 50 dB, –40°C to 85°C | –0.1 | |||||
AVOL | Large signal voltage gain | VO = 0.35 V to 2.35 V | 73 | 87 | dB | |
VO = 0.35 V to 2.35 V, –40°C to 85°C | 70 | |||||
VO | Output swing high | RL = 1 kΩ to V+/2 | 2.55 | 2.66 | V | |
RL = 10 kΩ to V+/2 | 2.68 | |||||
Output swing low | RL = 1 kΩ to V+/2 | 150 | 40 | mV | ||
RL = 10 kΩ to V+/2 | 20 | |||||
ISC | Output short-circuit current | Sourcing to V−
VID = 200 mV(5) |
25 | 35 | mA | |
Sinking to V+
VID = −200 mV(5) |
25 | 32 | ||||
IOUT | Output current | VOUT = 0.5 V from rails | ±20 | mA | ||
IS | Supply current | Normal operation | 600 | 900 | μA | |
Shutdown mode (LMV118) | 15 | 50 | ||||
SR | Slew rate (6) | AV = +1, VO = 1 VPP | 40 | V/μs | ||
BW | −3 dB BW | AV = +1, VOUT = 200 mVPP | 45 | MHz | ||
en | Input-referred voltage noise | f = 100 kHz | 40 | nV/√Hz | ||
f = 1 kHz | 60 | |||||
in | Input-referred current noise | f = 100 kHz | 0.75 | pA/√Hz | ||
f = 1 kHz | 1.2 | |||||
ton | Turnon time (LMV118) | 250 | ns | |||
toff | Turnoff time (LMV118) | 560 | ns | |||
THSD | Shutdown threshold (LMV118) | IS ≤ 50 μA | 1.95 | 2.3 | V | |
ISD | SHUTDOWN pin input current (LMV118) | See(4) | −20 | μA |
PARAMETER | TEST CONDITIONS | MIN(1) | TYP(2) | MAX(1) | UNIT | |
---|---|---|---|---|---|---|
VOS | Input offset voltage | 0 V ≤ VCM ≤ 1.7 V | ±1 | ±5 | mV | |
0 V ≤ VCM ≤ 1.7 V –40°C to 85°C |
±6 | |||||
TC VOS | Input offset average drift | See(3) | ±5 | μV/C | ||
IB | Input bias current | See(4) | −2 | −0.4 | μA | |
See(4), –40°C to 85°C | –2.2 | |||||
IOS | Input offset current | 1 | 500 | nA | ||
CMRR | Common mode rejection ratio | VCM stepped from 0 V to 3.8 V | 77 | 85 | dB | |
PSRR | Power supply rejection ratio | V+ = 5 V to 6 V or V− = 0 V to −1 V | 72 | 95 | dB | |
RIN | Common mode input resistance | 3 | MΩ | |||
CIN | Common mode input capacitance | 2 | pF | |||
CMVR | Input common-mode voltage range | CMRR ≥ 50 dB | −0.3 | 4 | V | |
CMRR ≥ 50 dB, –40°C to 85°C | –0.1 | |||||
AVOL | Large signal voltage gain | VO = 1.5 V to 3.5 V | 73 | 87 | dB | |
VO = 1.5 V to 3.5 V, –40°C to 85°C | 70 | |||||
VO | Output swing high | RL = 1 kΩ to V+/2 | 4.8 | 4.95 | V | |
RL = 10 kΩ to V+/2 | 4.98 | |||||
Output swing low | RL = 1 kΩ to V+/2 | 200 | 50 | mV | ||
RL = 10 kΩ to V+/2 | 20 | |||||
ISC | Output short-circuit current | Sourcing to V−
VID = 200 mV(5) |
35 | 45 | mA | |
Sinking to V+
VID = –200 mV(5) |
35 | 43 | ||||
IOUT | Output current | VOUT = 0.5 V from rails | ±20 | mA | ||
IS | Supply current | Normal operation | 600 | 900 | μA | |
Shutdown mode (LMV118) | 10 | 50 | ||||
SR | Slew rate (6) | AV = +1, VO = 1 VPP | 40 | V/μs | ||
BW | −3 dB BW | AV = +1, VOUT = 200 mVPP | 45 | MHz | ||
en | Input-referred voltage noise | f = 100 kHz | 40 | nV/√Hz | ||
f = 1 kHz | 60 | |||||
in | Input-referred current noise | f = 100 kHz | 0.75 | pA/√Hz | ||
f = 1 kHz | 1.2 | |||||
ton | Turnon time (LMV118) | 210 | ns | |||
toff | Turnoff time (LMV118) | 500 | ns | |||
THSD | Shutdown threshold (LMV118) | IS ≤ 50 μA | 4.25 | 4.6 | V | |
ISD | SHUTDOWN pin input current (LMV118) | See(4) | −20 | μA |
PARAMETER | TEST CONDITIONS | MIN(1) | TYP(2) | MAX(1) | UNIT | |
---|---|---|---|---|---|---|
VOS | Input offset voltage | 0 V ≤ VCM ≤ 1.7 V | ±1 | ±5 | mV | |
0 V ≤ VCM ≤ 1.7 V –40°C to 85°C |
±6 | |||||
TC VOS | Input offset average drift | See(3) | ±5 | μV/C | ||
IB | Input bias current | See(4) | −2 | −0.4 | μA | |
See(4), –40°C to 85°C | –2.2 | |||||
IOS | Input offset current | 3 | 500 | nA | ||
CMRR | Common mode rejection ratio | VCM stepped from 0 V to 3.8 V | 78 | 104 | dB | |
PSRR | Power supply rejection ratio | V+ = 5 V to 6 V or V− = 0 V to −1 V | 72 | 95 | dB | |
RIN | Common mode input resistance | 3 | MΩ | |||
CIN | Common mode input capacitance | 2 | pF | |||
CMVR | Input common-mode voltage range | CMRR ≥ 50 dB | −5.3 | 4 | V | |
CMRR ≥ 50 dB, –40°C to 85°C | –5.1 | |||||
AVOL | Large signal voltage gain | VO = 1.5 V to 3.5 V | 74 | 85 | dB | |
VO = 1.5 V to 3.5 V, –40°C to 85°C | 71 | |||||
VO | Output swing high | RL = 1 kΩ to V+/2 | 4.7 | 4.92 | V | |
RL = 10 kΩ to V+/2 | 4.97 | |||||
Output swing low | RL = 1 kΩ to V+/2 | –4.7 | –4.92 | V | ||
RL = 10 kΩ to V+/2 | –4.98 | |||||
ISC | Output short-circuit current | Sourcing to V−
VID = 200 mV(5) |
40 | 57 | mA | |
Sinking to V+
VID = −200 mV(5) |
40 | 54 | ||||
IOUT | Output current | VOUT = 0.5 V from rails | ±20 | mA | ||
IS | Supply current | Normal operation | 600 | 900 | μA | |
Shutdown mode (LMV118) | 15 | 50 | ||||
SR | Slew rate (6) | AV = 1, VO = 1 VPP | 35 | V/μs | ||
BW | −3 dB BW | AV = 1, VOUT = 200 mVPP | 45 | MHz | ||
en | Input-referred voltage noise | f = 100 kHz | 40 | nV/√Hz | ||
f = 1 kHz | 60 | |||||
in | Input-referred current noise | f = 100 kHz | 0.75 | pA/√Hz | ||
f = 1 kHz | 1.2 | |||||
ton | Turnon time (LMV118) | 200 | ns | |||
toff | Turnoff time (LMV118) | 700 | ns | |||
THSD | Shutdown threshold (LMV118) | IS ≤ 50 μA | 4.25 | 4.6 | V | |
ISD | SHUTDOWN pin input current (LMV118) | See(4) | −20 | μA |
The LMV116 and LMV118 are based on TI’s proprietary VIP10 dielectrically isolated bipolar process.
The LMV116 and LMV118 architecture features the following:
The amplifier's differential inputs consist of a non-inverting input (+IN) and an inverting input (–IN). The amplifier amplifies only the difference in voltage between the two inputs, which is called the differential input voltage. The output voltage of the op-amp VOUT is given by Equation 1:
where
When the output swing approaches either supply rail, the output transistor enters a quasi-saturated state. A subtle effect of this operational region is that there is an increase in supply current in this state (up to 1 mA). The onset of quasi-saturation region is a function of output loading (current) and varies from 100 mV at no load to about 1 V when output is delivering 20 mA, as measured from supplies. Both input common mode voltage and output voltage level affect the supply current (see Typical Characteristics for plot).
The LMV118 can be shut down to save power and reduce its supply current to less than the 50 μA specified by applying a voltage to the SD pin. The SD pin is active high and needs to be tied to V− for normal operation. This input is low current (< 20-μA, 4-pF equivalent capacitance) and a resistor to V− (≤ 20 kΩ) results in normal operation. Shutdown is specified when SD pin is 0.4 V or less from V+ at any operating supply voltage and temperature.
In the shutdown mode, essentially all internal device biasing is turned off in order to minimize supply current flow, and the output goes into Hi-Z (high impedance) mode. Complete device turnon and turnoff times vary considerably relative to the output loading conditions, output voltage, and input impedance, but is generally limited to less than 1 μs (see Electrical Characteristics: 2.7 V, Electrical Characteristics: 5 V, and Electrical Characteristics: ±5 V)
During shutdown, the input stage has an equivalent circuit as shown in Figure 20.
As can be seen from Figure 20, in shutdown there may be current flow through the internal diodes shown, caused by input potential, if present. This current may flow through the external feedback resistor and result in an apparent output signal. In most shutdown applications the presence of this output is inconsequential. However, if the output is forced by another device such as in a multiplexer, the other device must conduct the current described in order to maintain the output potential.
To keep the output at or near ground during shutdown when there is no other device to hold the output low, a switch (transistor) could be used to shunt the output to ground. Figure 21 shows a circuit where a NPN bipolar is used to keep the output near ground (approximately 80 mV):
Figure 22 shows the output waveform.
If bipolar transistor power dissipation is not tolerable, the switch can be done by an N-channel enhancement-mode MOSFET.