SNOS990H April   2002  – June 2016 LMV341-N , LMV342-N , LMV344-N

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics - 2.7 V (DC)
    6. 6.6 Electrical Characteristics - 2.7 V (AC)
    7. 6.7 Electrical Characteristics - 5 V (DC)
    8. 6.8 Electrical Characteristics - 5 V (AC)
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Class AB Turnaround Stage Amplifier
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Feature
      2. 7.4.2 Low Input Bias Current
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Sample and Hold Circuit
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Related Links
    4. 11.4 Receiving Notification of Documentation Updates
    5. 11.5 Community Resources
    6. 11.6 Trademarks
    7. 11.7 Electrostatic Discharge Caution
    8. 11.8 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
Differential input voltage ±Supply voltage
Supply voltage (V + – V) 6 V
Output short circuit to V + See(3)
Output short circuit to V See(4)
Lead temperature Infrared or convection reflow (20 s) 235 °C
Wave soldering (10 s) 260
Junction temperature, TJ(5) 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and specifications.
(3) Shorting output to V+ will adversely affect reliability.
(4) Shorting output to V- will adversely affect reliability.
(5) The maximum power dissipation is a function of TJ(MAX), RθJA. The maximum allowable power dissipation at any ambient temperature is PD = (TJ(MAX) – TA) / RθJA. All numbers apply for packages soldered directly onto a PCB.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM)(1) ±2000 V
Machine model (MM)(2) ±200
(1) Human Body Model, applicable std. MIL-STD-883, Method 3015.7.
(2) Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC) Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Supply voltage 2.7 5.5 V
Temperature –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) LMV341-N LMV342-N LMV344-N UNIT
DCK
(SC70)
D
(SOIC)
DGK
(VSSOP)
D
(SOIC)
PW
(TSSOP)
6 PINS 8 PINS 8 PINS 14 PINS 14 PINS
RθJA Junction-to-ambient thermal resistance 414 190 235 145 155 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 116.1 65.2 68.4 45.9 50.5 °C/W
RθJB Junction-to-board thermal resistance 53.3 61.4 98.8 44.1 66.2 °C/W
ψJT Junction-to-top characterization parameter 8.8 16.1 9.8 10.2 6.3 °C/W
ψJB Junction-to-board characterization parameter 52.7 60.8 97.3 43.7 65.6 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Electrical Characteristics – 2.7 V (DC)

TJ = 25°C, V+ = 2.7 V, V = 0 V, VCM = V+/ 2, VO = V+/ 2, and RL > 1 MΩ (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS MIN(2) TYP(3) MAX(2) UNIT
VOS Input offset voltage LMV341-N TJ = 25°C 0.25 4 mV
−40°C ≤ TJ ≤ 125°C 4.5
LMV342-N and
LMV344-N
TJ = 25°C 0.55 5
−40°C ≤ TJ ≤ 125°C 5.5
TCVOS Input offset voltage
average drift
1.7 µV/°C
IB Input bias current TJ = 25°C 0.02 120 pA
-40°C ≤ TJ ≤ 150°C 250
IOS Input offset current 6.6 fA
IS Supply current Per amplifier TJ = 25°C 100 170 µA
−40°C ≤ TJ ≤ 125°C 230
Shutdown mode,
VSD = 0 V,
LMV341-N
TJ = 25°C 4.5 × 10–5 1
−40°C ≤ TJ ≤ 125°C 1.5
CMRR Common-mode rejection ratio 0 V ≤ VCM ≤ 1.7 V,
0 V ≤ VCM ≤ 1.6 V
TJ = 25°C 56 80 dB
−40°C ≤ TJ ≤ 125°C 50
PSRR Power supply rejection ratio 2.7 V ≤ V+ ≤ 5 V TJ = 25°C 65 82 dB
−40°C ≤ TJ ≤ 125°C 60
VCM Input common-mode voltage For CMRR ≥ 50 dB V+ 1.9 1.7 V
V– 0 −0.2
AV Large signal voltage gain RL = 10 kΩ to 1.35 V TJ = 25°C 78 113 dB
–40°C ≤ TJ ≤ 125°C 70
RL = 2 kΩ to 1.35 V TJ = 25°C 72 103
–40°C ≤ TJ ≤ 125°C 64
VO Output swing RL = 2 kΩ to 1.35 V TJ = 25°C 24 60 mV
–40°C ≤ TJ ≤ 125°C 95
TJ = 25°C 60 26
–40°C ≤ TJ ≤ 125°C 95
RL = 10 kΩ to 1.35 V TJ = 25°C 5 30
–40°C ≤ TJ ≤ 125°C 40
TJ = 25°C 30 5.3
–40°C ≤ TJ ≤ 125°C 40
IO Output short-circuit current Sourcing, LMV341-N and LMV342-N 20 32 mA
Sourcing, LMV344-N 18 24
Sinking 15 24
ton Turnon time from shutdown LMV341-N 5 µs
VSD Shutdown pin voltage ON mode, LMV341-N 2.4 1.7 2.7 V
Shutdown mode, LMV341-N 0 1 0.8
(1) Electrical characteristic values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables under conditions of internal self heating where TJ > TA.
(2) All limits are specified by testing or statistical analysis.
(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and also depends on the application and configuration. The typical values are not tested and are not ensured on shipped production material.

6.6 Electrical Characteristics – 2.7 V (AC)

TJ = 25°C, V+ = 2.7V, V = 0V, VCM = V+/ 2, VO = V+/ 2, and RL > 1 MΩ (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS MIN(2) TYP(3) MAX(2) UNIT
SR Slew rate RL = 10 kΩ(4) 1 V/µs
GBW Gain bandwidth product RL = 100 kΩ, CL = 200 pF 1 MHz
Φm Phase margin RL = 100 kΩ 72 °
Gm Gain margin RL = 100 kΩ 20 dB
en Input-referred voltage noise f = 1 kHz 40 nV/√Hz
in Input-referred current noise f = 1 kHz 0.001 pA/√Hz
THD Total harmonic distortion f = 1 kHz, AV = +1,
RL = 600 Ω, VIN = 1VPP
0.017%
(1) Electrical characteristic values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables under conditions of internal self heating where TJ > TA.
(2) All limits are specified by testing or statistical analysis.
(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and also depends on the application and configuration. The typical values are not tested and are not ensured on shipped production material.
(4) Connected as voltage follower with 2-VPP step input. Number specified is the slower of the positive and negative slew rates.

6.7 Electrical Characteristics – 5 V (DC)

TJ = 25°C, V+ = 5 V, V = 0 V, VCM = V+/ 2, VO = V+/ 2, and R L > 1 MΩ (unless otherwise noted)(1)
PARAMETER TEST CONDITIONS MIN(2) TYP(3) MAX(2) UNIT
VOS Input offset voltage LMV341-N TJ = 25°C 0.025 4 mV
–40°C ≤ TJ ≤ 125°C 4.5
LMV342-N and LMV344-N TJ = 25°C 0.7 5
–40°C ≤ TJ ≤ 125°C 5.5
TCVOS Input offset voltage
average drift
1.9 µV/°C
IB Input bias current TJ = 25°C 0.02 200 pA
–40°C ≤ TJ ≤ 125°C 375
IOS Input offset current 6.6 fA
IS Supply current Per amplifier TJ = 25°C 107 200 µA
–40°C ≤ TJ ≤ 125°C 260
Shutdown mode,
VSD = 0 V,
LMV341-N
TJ = 25°C 0.033 1
–40°C ≤ TJ ≤ 125°C 1.5
CMRR Common-mode rejection ratio 0 V ≤ VCM ≤ 4 V,
0 V ≤ VCM ≤ 3.9 V
TJ = 25°C 56 86 dB
–40°C ≤ TJ ≤ 125°C 50
PSRR Power supply rejection ratio 2.7 V ≤ V+ ≤ 5 V TJ = 25°C 65 82 dB
–40°C ≤ TJ ≤ 125°C 60
VCM Input common-mode voltage For CMRR ≥ 50 dB V+ 4.2 4 V
V– 0 −0.2
AV Large signal voltage gain(4) RL = 10 kΩ to 2.5 V TJ = 25°C 78 116 dB
–40°C ≤ TJ ≤ 125°C 70
RL = 2 kΩ to 2.5 V TJ = 25°C 72 107
–40°C ≤ TJ ≤ 125°C 64
VO Output swing RL = 2 kΩ to 2.5 V TJ = 25°C 32 60 mV
–40°C ≤ TJ ≤ 125°C 95
TJ = 25°C 60 34
–40°C ≤ TJ ≤ 125°C 95
RL = 10 kΩ to 2.5 V TJ = 25°C 7 30
–40°C ≤ TJ ≤ 125°C 40
TJ = 25°C 30 7
–40°C ≤ TJ ≤ 125°C 40
IO Output short-circuit current Sourcing 85 113 mA
Sinking 50 75
ton Turnon time from shutdown LMV341-N 5 µs
VSD Shutdown pin voltage ON mode, LMV341-N 4.5 3.1 5 V
Shutdown mode, LMV341-N 0 1 0.8
(1) Electrical characteristic values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables under conditions of internal self heating where TJ > TA.
(2) All limits are specified by testing or statistical analysis.
(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and also depends on the application and configuration. The typical values are not tested and are not ensured on shipped production material.
(4) RL is connected to mid-supply. The output voltage is GND + 0.2 V ≤ VO ≤ V+– 0.2 V

6.8 Electrical Characteristics – 5 V (AC)

TJ = 25°C, V+ = 5 V, V = 0 V, VCM = V+/ 2, VO = V+/ 2 and R L > 1 MΩ (unless otherwise noted)(1)
PARAMETER CONDITIONS MIN(2) TYP(3) MAX(2) UNIT
SR Slew rate RL = 10 kΩ(4) 1 V/µs
GBW Gain-bandwidth product RL = 10 kΩ, CL = 200 pF 1 MHz
Φm Phase margin RL = 100 kΩ 70 deg
Gm Gain margin RL = 100 kΩ 20 dB
en Input-referred voltage noise f = 1 kHz 39 nV/√Hz
in Input-referred current noise f = 1 kHz 0.001 pA/√Hz
THD Total harmonic distortion f = 1 kHz, AV = +1,
RL = 600 Ω, VIN = 1VPP
0.012%
(1) Electrical characteristic values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No specification of parametric performance is indicated in the electrical tables under conditions of internal self heating where TJ > TA.
(2) All limits are specified by testing or statistical analysis.
(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and also depends on the application and configuration. The typical values are not tested and are not ensured on shipped production material.
(4) Connected as voltage follower with 2-VPP step input. Number specified is the slower of the positive and negative slew rates.

6.9 Typical Characteristics

LMV341-N LMV342-N LMV344-N 20030428.gif Figure 1. Supply Current vs Supply Voltage (LMV341-N)
LMV341-N LMV342-N LMV344-N 20030426.gif Figure 3. Output Voltage Swing vs Supply Voltage
LMV341-N LMV342-N LMV344-N 20030429.gif Figure 5. ISOURCE vs VOUT
LMV341-N LMV342-N LMV344-N 20030431.gif Figure 7. ISINK vs VOUT
LMV341-N LMV342-N LMV344-N 20030433.gif Figure 9. VOS vs VCM
LMV341-N LMV342-N LMV344-N 20030435.gif Figure 11. VIN vs VOUT
LMV341-N LMV342-N LMV344-N 20030403.gif Figure 13. CMRR vs Frequency
LMV341-N LMV342-N LMV344-N 20030404.gif Figure 15. Input Voltage Noise vs Frequency
LMV341-N LMV342-N LMV344-N 20030422.gif Figure 17. Slew Rate vs Temperature
LMV341-N LMV342-N LMV344-N 20030425.gif Figure 19. THD+N vs Frequency
LMV341-N LMV342-N LMV344-N 20030421.gif Figure 21. Open-Loop Frequency Over Temperature
LMV341-N LMV342-N LMV344-N 20030419.gif Figure 23. Open-Loop Frequency Response
LMV341-N LMV342-N LMV344-N 20030418.gif Figure 25. Gain and Phase vs CL
LMV341-N LMV342-N LMV344-N 20030449.gif Figure 27. Stability vs Capacitive Load
LMV341-N LMV342-N LMV344-N 20030408.gif Figure 29. Noninverting Large Signal Pulse Response
LMV341-N LMV342-N LMV344-N 20030409.gif Figure 31. Noninverting Large Signal Pulse Response
LMV341-N LMV342-N LMV344-N 20030410.gif Figure 33. Noninverting Large Signal Pulse Response
LMV341-N LMV342-N LMV344-N 20030414.gif Figure 35. Inverting Large Signal Pulse Response
LMV341-N LMV342-N LMV344-N 20030415.gif Figure 37. Inverting Large Signal Pulse Response
LMV341-N LMV342-N LMV344-N 20030416.gif Figure 39. Inverting Large Signal Pulse Response
LMV341-N LMV342-N LMV344-N 20030446.gif Figure 2. Input Current vs Temperature
LMV341-N LMV342-N LMV344-N 20030427.gif Figure 4. Output Voltage Swing vs Supply Voltage
LMV341-N LMV342-N LMV344-N 20030430.gif Figure 6. ISOURCE vs VOUT
LMV341-N LMV342-N LMV344-N 20030432.gif Figure 8. ISINK vs VOUT
LMV341-N LMV342-N LMV344-N 20030434.gif Figure 10. VOS vs VCM
LMV341-N LMV342-N LMV344-N 20030436.gif Figure 12. VIN vs VOUT
LMV341-N LMV342-N LMV344-N 20030401.gif Figure 14. PSRR vs Frequency
LMV341-N LMV342-N LMV344-N 20030402.gif Figure 16. Slew Rate vs VSUPPLY
LMV341-N LMV342-N LMV344-N 20030423.gif Figure 18. Slew Rate vs Temperature
LMV341-N LMV342-N LMV344-N 20030424.gif Figure 20. THD+N vs VOUT
LMV341-N LMV342-N LMV344-N 20030420.gif Figure 22. Open-Loop Frequency Response
LMV341-N LMV342-N LMV344-N 20030417.gif Figure 24. Gain and Phase vs CL
LMV341-N LMV342-N LMV344-N 20030448.gif Figure 26. Stability vs Capacitive Load
LMV341-N LMV342-N LMV344-N 20030405.gif Figure 28. Noninverting Small Signal Pulse Response
LMV341-N LMV342-N LMV344-N 20030406.gif Figure 30. Noninverting Small Signal Pulse Response
LMV341-N LMV342-N LMV344-N 20030407.gif Figure 32. Noninverting Small Signal Pulse Response
LMV341-N LMV342-N LMV344-N 20030411.gif Figure 34. Inverting Small Signal Pulse Response
LMV341-N LMV342-N LMV344-N 20030412.gif Figure 36. Inverting Small Signal Pulse Response
LMV341-N LMV342-N LMV344-N 20030413.gif Figure 38. Inverting Small Signal Pulse Response
LMV341-N LMV342-N LMV344-N 20030454.gif Figure 40. Crosstalk Rejection vs Frequency