SNAS800B July   2021  – February 2024 LMX1204

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Timing Diagram
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
      1. 6.1.1 Range of Dividers and Multiplier
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Power On Reset
      2. 6.3.2 Temperature Sensor
      3. 6.3.3 Clock Outputs
        1. 6.3.3.1 Clock Output Buffers
        2. 6.3.3.2 Clock MUX
        3. 6.3.3.3 Clock Divider
        4. 6.3.3.4 Clock Multiplier and Filter Modes
          1. 6.3.3.4.1 General Information About the Clock Multiplier
          2. 6.3.3.4.2 State Machine Clock for the Clock Multiplier
            1. 6.3.3.4.2.1 State Machine Clock
          3. 6.3.3.4.3 Calibration for the Clock Multiplier
          4. 6.3.3.4.4 Using the x1 Clock Multiplier as a Filter
          5. 6.3.3.4.5 Lock Detect for the Clock Multiplier
      4. 6.3.4 Device Functional Modes Configurations
      5. 6.3.5 LOGICLK Output
        1. 6.3.5.1 LOGICLK Output Format
        2. 6.3.5.2 LOGICLK_DIV_PRE and LOGICLK_DIV Dividers
      6. 6.3.6 SYSREF
        1. 6.3.6.1 SYSREF Output Buffers
          1. 6.3.6.1.1 SYSREF Output Buffers for Main Clocks (SYSREFOUT)
          2. 6.3.6.1.2 SYSREF Output Buffer for LOGICLK
        2. 6.3.6.2 SYSREF Frequency and Delay Generation
        3. 6.3.6.3 SYSREFREQ pins and SYSREFREQ_SPI Field
          1. 6.3.6.3.1 SYSREFREQ Pins Common-Mode Voltage
          2. 6.3.6.3.2 SYSREFREQ Windowing Feature
            1. 6.3.6.3.2.1 General Procedure Flowchart for SYSREF Windowing Operation
            2. 6.3.6.3.2.2 SYSREFREQ Repeater Mode With Delay Gen (Retime)
      7. 6.3.7 SYNC Feature
    4. 6.4 Device Functional Modes
  8. Register Map
    1. 7.1 LMX1204 Registers
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 SYSREFREQ Input Configuration
      2. 8.1.2 Reducing SYSREF Common Mode Voltages
      3. 8.1.3 Current Consumption
      4. 8.1.4 Treatment of Unused Pins
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Using the x1 Clock Multiplier as a Filter

As the multiplier is PLL based, the multiplier acts as a programmable filter that attenuates noise, spurs, harmonics, and sub-harmonics that are outside the PLL loop bandwidth (about 10MHz). Filter mode (x1 Multiplier) allows the user to use the clock multiplier as a tunable filter with 10MHz bandwidth that has lower additive noise than the higher multiply values. In this filter mode, the spurs are first amplified by the input stage and then attenuated by the loop filter making this mode most effective for filtering spurs at offsets of 100MHz or higher. Note that the filter mode is different than buffer mode because filter mode filters the input frequency, but adds more close in phase noise. A x1 multiplier value does not support the SYNC operation. At frequencies above 4.2GHz, there is a possibility of the subharmonics at Fref/3. These subharmonics can be eliminated by using the filter at the output.