SNAS866 December   2023 LMX1214

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Timing Diagram
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
      1. 6.1.1 Range of Dividers
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Power-On Reset
      2. 6.3.2 Temperature Sensor
      3. 6.3.3 Clock Outputs
        1. 6.3.3.1 Clock Output Buffers
        2. 6.3.3.2 Clock MUX
        3. 6.3.3.3 Clock Divider
      4. 6.3.4 AUXCLK Output
        1. 6.3.4.1 AUXCLKOUT Output Format
        2. 6.3.4.2 AUXCLK_DIV_PRE and AUXCLK_DIV Dividers
      5. 6.3.5 SYNC Input Pins
        1. 6.3.5.1 SYNC Pins Common-Mode Voltage
        2. 6.3.5.2 Windowing Feature
    4. 6.4 Device Functional Modes Configurations
      1. 6.4.1 Pin Mode Control
  8. Application and Implementation
    1. 7.1 Applications Information
      1. 7.1.1 SYNC Input Configuration
      2. 7.1.2 Treatment of Unused Pins
      3. 7.1.3 Current Consumption
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
      3. 7.2.3 Application Plots
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
    5. 7.5 Register Map
      1. 7.5.1 Device Registers
  9. Device and Documentation Support
    1. 8.1 Device Support
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Temperature Sensor

The junction temperature can be read back for purposes such as characterization or to make adjustments based on temperature. Such adjustments might include adjusting CLKOUTx_PWR to make the output power more stable or using external or digital delays to compensate for changes in propagation delay over temperature.

The junction temperature is typically higher than the ambient temperature due to power dissipation from the outputs and other functions on the device. Equation 1 shows the relationship between the code read back and the junction temperature.

Equation 1. Temperature = 0.65 × Code – 351

Equation 1 is based on a best-fit line created from three devices from slow, nominal, and fast corner lots (nine parts total). The worst-case variation of the actual temperature from the temperature predicted by the best-fit line was 13°C, which works out to 20 codes.