SNAS883 June   2024 LMX1860-SEP

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Timing Diagram
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
      1. 6.1.1 Range of Dividers and Multiplier
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Power On Reset
      2. 6.3.2 Temperature Sensor
      3. 6.3.3 Clock Outputs
        1. 6.3.3.1 Clock Output Buffers
        2. 6.3.3.2 Clock MUX
        3. 6.3.3.3 Clock Divider
        4. 6.3.3.4 Clock Multiplier
          1. 6.3.3.4.1 General Information about the Clock Multiplier
          2. 6.3.3.4.2 State Machine Clock for the Clock Multiplier
            1. 6.3.3.4.2.1 State Machine Clock
          3. 6.3.3.4.3 Calibration for the Clock Multiplier
          4. 6.3.3.4.4 Lock Detect for the Clock Multiplier
          5. 6.3.3.4.5 Watchdog Timer
      4. 6.3.4 Device Functional Modes Configurations
      5. 6.3.5 LOGICLK Output
        1. 6.3.5.1 LOGICLK Output Format
        2. 6.3.5.2 LOGICLK_DIV_PRE and LOGICLK_DIV Dividers
      6. 6.3.6 SYSREF
        1. 6.3.6.1 SYSREF Output Buffers
          1. 6.3.6.1.1 SYSREF Output Buffers for Main Clocks (SYSREFOUT)
          2. 6.3.6.1.2 SYSREF Output Buffer for LOGICLK
        2. 6.3.6.2 SYSREF Frequency and Delay Generation
        3. 6.3.6.3 SYSREFREQ Pins and SYSREFREQ_FORCE Field
          1. 6.3.6.3.1 SYSREFREQ Pins Common-Mode Voltage
          2. 6.3.6.3.2 SYSREFREQ Windowing Feature
            1. 6.3.6.3.2.1 General Procedure Flowchart for SYSREF Windowing Operation
            2. 6.3.6.3.2.2 SYSREFREQ Repeater Mode With Delay Generation (Retime)
            3. 6.3.6.3.2.3 Other Guidance For SYSREF Windowing
            4. 6.3.6.3.2.4 For Glitch-Free Output
            5. 6.3.6.3.2.5 If Using SYNC Feature
          3. 6.3.6.3.3 SYNC Feature
      7. 6.3.7 Pin Mode Control
        1. 6.3.7.1 Chip Enable (CE)
        2. 6.3.7.2 Output Channel Control
        3. 6.3.7.3 Logic Output Control
        4. 6.3.7.4 SYSREF Output Control
        5. 6.3.7.5 Device Mode Selection
        6. 6.3.7.6 Divider or Multiplier Value Selection
        7. 6.3.7.7 Calibration Control Pin
        8. 6.3.7.8 Output Power Control
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 SYSREFREQ Input Configuration
      2. 7.1.2 Treatment of Unused Pins
      3. 7.1.3 Current Consumption
    2. 7.2 Typical Applications
      1. 7.2.1 Local Oscillator Distribution Application
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
        3. 7.2.1.3 Application Plot
      2. 7.2.2 JESD204B/C Clock Distribution Application
    3. 7.3 Layout
      1. 7.3.1 Layout Guidelines
      2. 7.3.2 Layout Example
    4. 7.4 Power Supply Recommendations
      1. 7.4.1 Power-Up Timing
    5. 7.5 Register Map
      1. 7.5.1 Device Registers
  9. Device and Documentation Support
    1. 8.1 Device Support
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power On Reset

When the device is powered up, the power-on reset (POR) resets all registers to a default state as well as resets all state machines and dividers. For the power on reset state, all SYSREF outputs are disabled and all the dividers are bypassed and the device performs as a 4-output buffer. Wait approximately 100µs after the power supply rails before programming other registers to verify that this reset is finished. The device functions properly if the power-on reset happens when no device clock is present, but the current changes after an input clock is inserted.

Performing a software power on reset by writing RESET = 1 in the SPI bus is possible and generally good practice. The RESET bit self-clears when the user writes to any other register. The SPI bus can be used to override these states to the desired settings.

Although the device does have an automatic power on reset, the can be impacted by different ramp rates on the different supply pins, especially in the presence of a strong input clock signal. TI therefore recommends to do a software reset after POR. This can be done by programming RESET = 1. The reset bit can be cleared by programming any other register or setting RESET back to 0. Even at the maximum allowed SPI bus speed, the software reset event always completes before the subsequent SPI write.