SNOSB31J July   2009  – December 2014 LMX2541

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
      1. 7.7.1 Not Ensured Characteristics
      2. 7.7.2 Output Power in Bypass Mode
      3. 7.7.3 Output Power in Divided Mode
      4. 7.7.4 RFout Output Impedance
        1. 7.7.4.1 OSCin and Fin Sensitivity
  8. Parameter Measurement Information
    1. 8.1 Bench Test Setups
      1. 8.1.1 Charge Pump Current Measurements
      2. 8.1.2 Charge Pump Current Definitions
        1. 8.1.2.1 Charge Pump Current Definitions
        2. 8.1.2.2 Variation of Charge Pump Current Magnitude vs. Charge Pump Voltage
        3. 8.1.2.3 Variation of Charge Pump Current Magnitude vs. Temperature
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagrams
    3. 9.3 Feature Description
      1. 9.3.1  PLL Reference Oscillator Input Pins
      2. 9.3.2  PLL R Divider
      3. 9.3.3  PLL Phase Detector and Charge Pump
      4. 9.3.4  PLL N Divider and Fractional Circuitry
      5. 9.3.5  Partially Integrated Loop Filter
      6. 9.3.6  Low Noise, Fully Integrated VCO
      7. 9.3.7  Programmable VCO Divider
      8. 9.3.8  Programmable RF Output Buffer
      9. 9.3.9  Powerdown Modes
      10. 9.3.10 Fastlock
      11. 9.3.11 Lock Detect
      12. 9.3.12 Current Consumption
      13. 9.3.13 Fractional Spurs
        1. 9.3.13.1 Primary Fractional Spurs
        2. 9.3.13.2 Sub-Fractional Spurs
      14. 9.3.14 Impact of VCO_DIV on Fractional Spurs
      15. 9.3.15 PLL Phase Noise
        1. 9.3.15.1 , LMX2541SQ3740E Raw Phase Noise Measurement Plot Description
        2. 9.3.15.2 , LMX2541SQ2690 System Phase Noise Plot Description
        3. 9.3.15.3 Phase Noise of PLL
      16. 9.3.16 Impact of Modulator Order, Dithering, and Larger Equivalent Fractions on Spurs and Phase Noise
      17. 9.3.17 Modulator Order
      18. 9.3.18 Programmable Output Power with On/Off
      19. 9.3.19 Loop Filter
      20. 9.3.20 Internal VCO Digital Calibration Time
    4. 9.4 Device Functional Modes
      1. 9.4.1 External VCO Mode
      2. 9.4.2 Digital FSK Mode
    5. 9.5 Programming
      1. 9.5.1 General Programming Information
    6. 9.6 Register Maps
      1. 9.6.1 Register R7
        1. 9.6.1.1  Register R13
          1. 9.6.1.1.1 VCO_DIV_OPT[2:0]
        2. 9.6.1.2  Register R12
        3. 9.6.1.3  Register R9
        4. 9.6.1.4  Register R8
          1. 9.6.1.4.1 AC_TEMP_COMP[4:0]
        5. 9.6.1.5  Register R6
          1. 9.6.1.5.1 RFOUT[1:0] - RFout enable pin
          2. 9.6.1.5.2 DIVGAIN[3:0], VCOGAIN[3:0], and OUTTERM[3:0] - Power Controls for RFout
        6. 9.6.1.6  Register R5
          1. 9.6.1.6.1 FL_TOC[13:0] -- Time Out Counter for FastLock
          2. 9.6.1.6.2 FL_R3_LF[2:0] -- Value for Internal Loop Filter Resistor R3 During Fastlock
          3. 9.6.1.6.3 FL_R4_LF[2:0] -- Value for Internal Loop Filter Resistor R4 During Fastlock
          4. 9.6.1.6.4 FL_CPG[4:0] -- Charge Pump Current for Fastlock
        7. 9.6.1.7  Register R4
          1. 9.6.1.7.1 OSC_FREQ [7:0] -- OSCin Frequency for VCO Calibration Clocking
          2. 9.6.1.7.2 VCO_DIV[5:0] - VCO Divider
          3. 9.6.1.7.3 R3_LF[2:0] -- Value for Internal Loop Filter Resistor R3
          4. 9.6.1.7.4 R4_LF[2:0] -- Value for Internal Loop Filter Resistor R4
          5. 9.6.1.7.5 C3_LF[3:0] -- Value for C3 in the Internal Loop Filter
          6. 9.6.1.7.6 C4_LF[3:0] -- Value for C4 in the Internal Loop Filter
        8. 9.6.1.8  Register R3
          1. 9.6.1.8.1  MODE[1:0] -- Operational Mode
          2. 9.6.1.8.2  Powerdown -- Powerdown Bit
          3. 9.6.1.8.3  XO - Crystal Oscillator Mode Select
          4. 9.6.1.8.4  CPG[4:0] -- Charge Pump Current
          5. 9.6.1.8.5  MUX[3:0] -- Multiplexed Output for Ftest/LD Pin
          6. 9.6.1.8.6  CPP - Charge Pump Polarity
          7. 9.6.1.8.7  OSC2X-- OSCin Frequency Doubler
          8. 9.6.1.8.8  FDM - Extended Fractional Denominator Mode Enable
          9. 9.6.1.8.9  ORDER[2:0] -- Delta-Sigma Modulator Order
          10. 9.6.1.8.10 DITH[1:0] -- Dithering
          11. 9.6.1.8.11 CPT - Charge Pump TRI-STATE
          12. 9.6.1.8.12 DLOCK[2:0] - Controls for Digital Lock Detect
          13. 9.6.1.8.13 FSK - Frequency Shift Keying
        9. 9.6.1.9  Register R2
          1. 9.6.1.9.1 PLL_DEN[21:0] -- Fractional Denominator
        10. 9.6.1.10 Registers R1 and R0
          1. 9.6.1.10.1 PLL_R[11:0] -- PLL R Divider Value
          2. 9.6.1.10.2 PLL_N[17:0] PLL N Divider Value
          3. 9.6.1.10.3 PLL_NUM[21:0] -- Fractional Numerator
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Determining the Best Frequency Option of the LMX2541 to Use
      2. 10.1.2 RFout Output Power Test Setup
      3. 10.1.3 Phase Noise Measurement Test Setup
        1. 10.1.3.1 PLL Phase Noise Measurement
          1. 10.1.3.1.1 PLL Phase Noise Measurement - 1/f Noise
          2. 10.1.3.1.2 PLL Phase Noise Measurement - Flat Noise
        2. 10.1.3.2 VCO Phase Noise Measurement
        3. 10.1.3.3 Divider Phase Noise Measurement
      4. 10.1.4 Input and Output Impedance Test Setup
        1. 10.1.4.1 OSCin Input Impedance Measurement
        2. 10.1.4.2 ExtVCOin Input Impedance Measurement
        3. 10.1.4.3 RFout Output Impedance Measurement
      5. 10.1.5 ExtVCOin (NOT OSCin) Input Sensitivity Test Setup
      6. 10.1.6 OSCin Input Sensitivity Test Setup
        1. 10.1.6.1 Input Sensitivity Test Procedure
        2. 10.1.6.2 OSCin Slew Rate Tests
      7. 10.1.7 Typical Connections
        1. 10.1.7.1 Full Chip Mode, Differential OSCin
        2. 10.1.7.2 External VCO Mode, Single-Ended OSCin, RFout Pin not Used
        3. 10.1.7.3 OSCin/OSCin* Connections
          1. 10.1.7.3.1 Single-Ended Operation
          2. 10.1.7.3.2 Differential Operation
          3. 10.1.7.3.3 Crystal Mode Operation
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Configuring the LMX2541 for Optimal Performance
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
    2. 13.2 Trademarks
    3. 13.3 Electrostatic Discharge Caution
    4. 13.4 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • NJK|36
Thermal pad, mechanical data (Package|Pins)
Orderable Information

8 Parameter Measurement Information

8.1 Bench Test Setups

LMX2541 30073340.gifFigure 22. Charge Pump Currents Test Setup

The charge pump is tested in external VCO mode (MODE=1), although it is no external VCO hooked up. The CPout pin should be disconnected from the any external VCO tuning pin, external loop filter, and also the Vtune pin on the device. A signal is then applied to the OSCin pin to ensure that the R counter is oscillating. This signal does not have to be clean and the frequency is very critical. These currents at the CPout pin are typically measured with a semiconductor parameter analyzer.

8.1.1 Charge Pump Current Measurements

In order to test the TRI-STATE current, the CPT bit is set to one and the current is measured. Aside from having no other sources of leakage attached to this pin, it is also important that the board be well cleaned before doing this test. The temperature and voltage at the charge pump can then be varied and the resulting leakage current is then recorded. Typically, the leakage currents are worst at higher temperatures and higher charge pump voltages.

In order to test the source and sink currents, the CPT bit is set to active mode and the frequency is programmed to something much higher than can be achieved in order to force the charge pump to rail. The reason why this is necessary is that the duty cycle of the charge pump is not 100% unless it is forced against one of the rails. If the charge pump polarity bit (CPP) is set to positive, then the charge pump source current is measured. To measure the sink current, the CPT bit is set to negative. The part is then programmed and the charge pump will rail in one direction. The semiconductor parameter analyzer measures the current at a particular charge pump voltage. The phase detector polarity bit, CPP, can be toggled to test between the negative and positive charge pump gains. In order to test leakage, set the TRI-STATE bit, CPT, to 1 so that this can be measured. For the most accurate measurements, it is desirable that the CPout and Vtune pin are not shorted together for these measurements. Once these currents are measured, then the datasheet parameters can be calculated.

A summary of these charge pump tests is given in the table below.

MEASUREMENT PLL_R PLL_N CPG CPT CPP
Leakage Current X X X 1 (TRI-STATE) X
Source Current 1 4000 0 - 31 0 (Active) 1 (Positive)
Sink Current 1 4000 0 - 31 0 (Active) 0 (Negative)

8.1.2 Charge Pump Current Definitions

8.1.2.1 Charge Pump Current Definitions

LMX2541 30073332.png

I1 = Charge Pump Sink Current at VCPout = Vcc - ΔV

I2 = Charge Pump Sink Current at VCPout = Vcc/2

I3 = Charge Pump Sink Current at VCPout = ΔV

I4 = Charge Pump Source Current at VCPout = Vcc - ΔV

I5 = Charge Pump Source Current at VCPout = Vcc/2

I6 = Charge Pump Source Current at VCPout = ΔV

ΔV = Voltage offset from the positive and negative supply rails. Defined to be 0.4 volts for this part.

8.1.2.2 Variation of Charge Pump Current Magnitude vs. Charge Pump Voltage

LMX2541 30073333.png

8.1.2.3 Variation of Charge Pump Current Magnitude vs. Temperature

LMX2541 30073335.png
LMX2541 30073334.pngFigure 23. Charge Pump Sink vs. Source Current Mismatch