SNVS658I March   2011  – August 2015 LMZ22003

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Synchronization Input
      2. 7.3.2 Output Over-voltage Protection
      3. 7.3.3 Current Limit
      4. 7.3.4 Thermal Protection
      5. 7.3.5 Prebiased Start-Up
    4. 7.4 Device Functional Modes
      1. 7.4.1 Discontinuous Conduction and Continuous Conduction Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Design Steps
        2. 8.2.2.2 Enable Divider, RENT, RENB and RENHSelection
        3. 8.2.2.3 Output Voltage Selection
        4. 8.2.2.4 Soft-Start Capacitor Selection
        5. 8.2.2.5 Tracking Supply Divider Option
        6. 8.2.2.6 CO Selection
        7. 8.2.2.7 CIN Selection
        8. 8.2.2.8 Discontinuous Conduction and Continuous Conduction Modes Selection
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Examples
    3. 10.3 Power Dissipation and Thermal Considerations
    4. 10.4 Power Module SMT Guidelines
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Development Support
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)(3)
MIN MAX UNIT
VIN to PGND –0.3 24 V
EN, SYNC to AGND –0.3 5.5 V
SS/TRK, FB to AGND –0.3 2.5 V
AGND to PGND –0.3 0.3 V
Junction temperature 150 °C
Peak reflow case temperature (30 sec) 245 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
(3) For soldering specifications, refer to the following document: SNOA549

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VIN 6 20 V
EN, SYNC 0 5 V
Operation junction temperature –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) LMZ22003 UNIT
NDW
7 PINS
RθJA Junction-to-ambient thermal resistance(2) 4-layer Evaluation Printed-Circuit-Board,
60 vias, No air flow
12.0 °C/W
2-layer JEDEC Printed-Circuit-Board,
No air flow
21.5
RθJC(top) Junction-to-case (top) thermal resistance No air flow 1.9 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) RθJA measured on a 3.5-in × 3.5-in 4-layer board, with 3-oz. copper on outer layers and 2-oz. copper on inner layers, sixty thermal vias, no air flow, and 1-W power dissipation. Refer to application note layout diagrams.

6.5 Electrical Characteristics

Minimum and Maximum limits are ensured through test, design, or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise stated the following conditions apply: VIN = 12 V, VOUT = 3.3 V.
PARAMETER TEST CONDITIONS MIN(1) TYP(2) MAX(1) UNIT
SYSTEM PARAMETERS
ENABLE CONTROL
VEN EN threshold trip point VEN rising, TJ = 25°C 1.279 V
VEN rising, TJ = –40°C to +125°C 1.1 1.458
VEN-HYS EN input hysteresis current VEN > 1.279 V –21 µA
SOFT-START
ISS SS source current VSS = 0 V, TJ = 25°C 50 µA
VSS = 0 V, TJ = –40°C to +125°C 40 50 60
tSS Internal soft-start interval 1.6 ms
CURRENT LIMIT
ICL Current limit threshold DC average, TJ = –40°C to +125°C 3.4 A
INTERNAL SWITCHING OSCILLATOR
fosc Free-running oscillator frequency Sync input connected to ground. 711 812 914 kHz
fsync Synchronization range 650 950 kHz
VIL-sync Synchronization logic zero amplitude Relative to AGND, TJ = –40°C to +125°C 0.4 V
VIH-sync Synchronization logic one amplitude Relative to AGND, TJ = –40°C to +125°C 1.5 V
Sync dc Synchronization duty cycle range 15% 50% 85%
Dmax Maximum Duty Factor 83%
REGULATION AND OVER-VOLTAGE COMPARATOR
VFB In-regulation feedback voltage VSS >+ 0.8 V, IO = 3 A, TJ = 25°C 0.796 V
VSS >+ 0.8 V, IO = 3 A,
TJ = –40°C to +125°C
0.776 0.816
VFB-OV Feedback overvoltage protection threshold 0.86 V
IFB Feedback input bias current 5 nA
IQ Non-switching input current VFB = 0.86 V 2.6 mA
ISD Shutdown quiescent current VEN = 0 V 70 μA
THERMAL CHARACTERISTICS
TSD Thermal shutdown Rising 165 °C
TSD-HYST Thermal shutdown hysteresis Falling 15 °C
PERFORMANCE PARAMETERS(3)
ΔVO Output voltage ripple Cout = 220 µF with 7 mΩ ESR + 100 µF
X7R + 2 x 0.047 µF BW at 20 MHz
9 mVPP
ΔVO/ΔVIN Line regulation VIN = 12 V to 20 V, IO= 0.001 A ±0.02%
ΔVO/ΔIOUT Load regulation VIN = 12 V, IO= 0.001 A to 3 A 1 mV/A
η Peak efficiency VIN = 12 V, VO = 3.3 V, IO = 1 A 86%
η Full load efficiency VIN = 12 V VO = 3.3 V, IO = 3 A 85%
(1) Minimum and Maximum limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate Average Outgoing Quality Level (AOQL).
(2) Typical numbers are at 25°C and represent the most likely parametric norm.
(3) Refer to BOM in Table 1.

6.6 Typical Characteristics

Unless otherwise specified, the following conditions apply: VIN = 12V; CIN = 2 × 10 μF + 1-μF X7R Ceramic; CO = 220-μF Specialty Polymer + 10-µF Ceramic; TA = 25°C for waveforms. Efficiency and dissipation plots marked with * have cycle skipping at light loads resulting is slightly higher Output ripple – See Design Steps section.
LMZ22003 30116887.gif
Figure 1. Efficiency 6-V Output at 25°C Ambient
LMZ22003 30116852.gif
Figure 3. Efficiency 5-V Output at 25°C Ambient
LMZ22003 30116854.gif
Figure 5. Efficiency 3.3-V Output at 25°C Ambient
LMZ22003 30116856.gif
Figure 7. Efficiency 2.5-V Output at 25°C Ambient
LMZ22003 30116858.gif
Figure 9. Efficiency 1.8-V Output at 25°C Ambient
LMZ22003 30116860.gif
Figure 11. Efficiency 1.5-V Output at 25°C Ambient
LMZ22003 30116862.gif
Figure 13. Efficiency 1.2-V Output at 25°C Ambient
LMZ22003 30116864.gif
Figure 15. Efficiency 1-V Output at 25°C Ambient
LMZ22003 30116890.gif
Figure 17. Efficiency 0.8-V Output at 25°C Ambient
LMZ22003 30116826.gif
Figure 19. Efficiency 6-V Output at 85°C Ambient
LMZ22003 30116828.gif
Figure 21. Efficiency 5-V Output at 85°C Ambient
LMZ22003 30116830.gif
Figure 23. Efficiency 3.3-V Output at 85°C Ambient
LMZ22003 30116832.gif
Figure 25. Efficiency 2.5-V Output at 85°C Ambient
LMZ22003 30116834.gif
Figure 27. Efficiency 1.8-V Output at 85°C Ambient
LMZ22003 30116836.gif
Figure 29. Efficiency 1.5-V Output at 85°C Ambient
LMZ22003 30116838.gif
Figure 31. Efficiency 1.2-V Output at 85°C Ambient
LMZ22003 30116840.gif
Figure 33. Efficiency 1-V Output at 85°C Ambient
LMZ22003 30116892.gif
Figure 35. Efficiency 0.8-V Output at 85°C Ambient
LMZ22003 30116889.gif
VIN = 12 V, VOUT = 5 V
Figure 37. Thermal Derating
LMZ22003 30116842.gif
VOUT = 3.3 V
Figure 39. Normalized Line and Load Regulation
LMZ22003 30116806.gif
12 VIN 3.3 VOat 3 A, BW = 250 MHz
Figure 41. Output Ripple
LMZ22003 30116818.gif
Figure 43. Short Circuit Current vs Input Voltage
LMZ22003 30116888.gif
Figure 2. Dissipation 6-V Output at 25°C Ambient
LMZ22003 30116853.gif
Figure 4. Dissipation 5-V Output at 25°C Ambient
LMZ22003 30116855.gif
Figure 6. Dissipation 3.3-V Output at 25°C Ambient
LMZ22003 30116857.gif
Figure 8. Dissipation 2.5-V Output at 25°C Ambient
LMZ22003 30116859.gif
Figure 10. Dissipation 1.8-V Output at 25°C Ambient
LMZ22003 30116861.gif
Figure 12. Dissipation 1.5-V Output at 25°C Ambient
LMZ22003 30116863.gif
Figure 14. Dissipation 1.2-V Output at 25°C Ambient
LMZ22003 30116865.gif
Figure 16. Dissipation 1-V Output at 25°C Ambient
LMZ22003 30116891.gif
Figure 18. Dissipation 0.8-V Output at 25°C Ambient
LMZ22003 30116827.gif
Figure 20. Dissipation 6-V Output at 85°C Ambient
LMZ22003 30116829.gif
Figure 22. Dissipation 5-V Output at 85°C Ambient
LMZ22003 30116831.gif
Figure 24. Dissipation 3.3-V Output at 85°C Ambient
LMZ22003 30116833.gif
Figure 26. Dissipation 2.5-V Output at 85°C Ambient
LMZ22003 30116835.gif
Figure 28. Dissipation 1.8-V Output at 85°C Ambient
LMZ22003 30116837.gif
Figure 30. Dissipation 1.5-V Output at 85°C Ambient
LMZ22003 30116839.gif
Figure 32. Dissipation 1.2-V Output at 85°C Ambient
LMZ22003 30116841.gif
Figure 34. Dissipation 1-V Output at 85°C Ambient
LMZ22003 30116893.gif
Figure 36. Dissipation 0.8-V Output at 85°C Ambient
LMZ22003 30116894.gif
VIN= 12 V, VOUT = 3.3 V
Figure 38. Thermal Derating
LMZ22003 30116805.gif
12 VIN 3.3 VO at 3 A, BW = 20 MHz
Figure 40. Output Ripple
LMZ22003 30116808.gif
12 VIN 3.3 VO 0.5- to 3-A Step
Figure 42. Transient Response