SNVS137I March   1999  – September 2015 LP2986

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Function
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 High-Accuracy Output Voltage
      2. 7.3.2 Error Detection Comparator Output
      3. 7.3.3 Thermal Protection
      4. 7.3.4 Short-Circuit Protection (Current Limit)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Fixed or Adjustable Regulated Output
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Using an External Resistive Divider
        2. 8.2.2.2 External Capacitors
          1. 8.2.2.2.1 Input Capacitor
          2. 8.2.2.2.2 Output Capacitor
        3. 8.2.2.3 Capacitor Characteristics
          1. 8.2.2.3.1 Tantalum
          2. 8.2.2.3.2 Ceramic
          3. 8.2.2.3.3 Aluminum
        4. 8.2.2.4 Reverse Input-Output Voltage
        5. 8.2.2.5 WSON Package Devices
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Examples
    3. 10.3 WSON Mounting
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
Input supply voltage (survival) –0.3 16 V
Input supply voltage (operating) 2.1 16 V
SHUTDOWN pin –0.3 16 V
FEEDBACK pin –0.3 5 V
Output voltage (survival)(3) –0.3 16 V
IOUT (survival) Short-circuit protected
Input-output voltage (survival)(4) –0.3 16 V
Power dissipation(5) Internally limited
Storage temperature, Tstg −65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/Distributors for availability and specifications.
(3) If used in a dual-supply system where the regulator load is returned to a negative supply, the LM2986 output must be diode-clamped to ground.
(4) The output PNP structure contains a diode between the IN and OUT pins that is normally reverse-biased. Forcing the output above the input will turn on this diode and may induce a latch-up mode which can damage the part (see Reverse Input-Output Voltage).
(5) The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(MAX), the junction-to-ambient thermal resistance, RθJA, and the ambient temperature, TA. The maximum allowable power dissipation at any ambient temperature is calculated using: P(MAX) = TJ(MAX) – TA / RθJA
For improved thermal resistance and power dissipation for the WSON package, refer to Texas Instruments Application Note Leadless Leadframe Package (LLP) (SNOA401). Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) All pins except FEEDBACK, IN, and TAP ±2000 V
FEEDBACK pin ±500
IN pin ±1000
TAP pin ±1500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Supply input voltage 2.1 16 V
Enable input voltage 0 16 V
Output current 200 mA
Operating junction temperature −40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) LP2986 UNIT
D (SOIC) DGK (VSSOP) NGN (WSON)
8 PINS
RθJA(2) Junction-to-ambient thermal resistance, High-K 114.4 156.5 37.8(3) °C/W
RθJC(top) Junction-to-case (top) thermal resistance 61.4 51.0 28.58 °C/W
RθJB Junction-to-board thermal resistance 55.5 76.5 15.0 °C/W
ψJT Junction-to-top characterization parameter 9.8 4.9 0.2 °C/W
ψJB Junction-to-board characterization parameter 54.9 75.2 15.2 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a n/a 4.4 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) Thermal resistance value RθJA is based on the EIA/JEDEC High-K printed circuit board defined by: JESD51-7 - High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages.
(3) The PCB for the NGN (WSON) package RθJA includes four (4) thermal vias under the exposed thermal pad per EIA/JEDEC JESD51-5.

6.5 Electrical Characteristics

Unless otherwise specified: TJ = 25°C, VIN = VOUT(NOM) + 1 V, IOUT = 1 mA, COUT = 4.7 µF, CIN = 2.2 µF, VSD = 2 V.
PARAMETER TEST CONDITIONS LP2986AI-X.X(1) LP2986I-X.X(1) UNIT
MIN TYP MAX MIN TYP MAX
VOUT Output voltage (5-V version) 4.975 5 5.025 4.95 5 5.05 V
0.1 mA < IOUT < 200 mA 4.96 5 5.04 4.92 5 5.08
0.1 mA < IOUT < 200 mA
–40°C ≤ TJ ≤ 125°C
4.91 5.09 4.86 5.14
Output voltage (3.3-V version) 3.283 3.3 3.317 3.267 3.3 3.333 V
0.1 mA < IOUT < 200 mA 3.274 3.3 3.326 3.247 3.3 3.353
0.1 mA < IOUT < 200 mA
–40°C ≤ TJ ≤ 125°C
3.241 3.359 3.208 3.392
Output voltage (3-V version) 2.985 3 3.015 2.97 3 3.03 V
0.1 mA < IOUT < 200 mA 2.976 3 3.024 2.952 3 3.048
0.1 mA < IOUT < 200 mA
–40°C ≤ TJ ≤ 125°C
2.946 3.054 2.916 3.084
ΔVOUT/ΔVIN Output voltage line regulation VOUT(NOM) + 1 V ≤ VIN ≤ 16 V 0.007 0.014 0.007 0.014 %/V
VOUT(NOM) + 1 V ≤ VIN ≤ 16 V,
–40°C ≤ TJ ≤ 125°C
0.032 0.032
VIN – VOUT Dropout voltage(2) IOUT = 100 µA 1 2 1 2 mV
IOUT = 100 µA
–40°C ≤ TJ ≤ 125°C
3.5 3.5
IOUT = 75 mA 90 120 90 120
IOUT = 75 mA
–40°C ≤ TJ ≤ 125°C
170 170
IOUT = 200 mA 180 230 180 230
IOUT = 200 mA
–40°C ≤ TJ ≤ 125°C
350 350
IGND Ground pin current IOUT = 100 µA 100 120 100 120 µA
IOUT = 100 µA
–40°C ≤ TJ ≤ 125°C
150 110 150
IOUT = 75 mA 500 800 500 800
IOUT = 75 mA
–40°C ≤ TJ ≤ 125°C
1400 1400
IOUT = 200 mA 1 2.1 1 2.1 mA
IOUT = 200 mA
–40°C ≤ TJ ≤ 125°C
3.7 3.7
VSD < 0.3 V 0.05 0.05 µA
VSD < 0.3 V
–40°C ≤ TJ ≤ 125°C
1.5 1.5
IOUT(PK) Peak output current VOUT ≥ VOUT(NOM) − 5% 250 400 250 400 mA
IOUT(MAX) Short-circuit current RL = 0 (steady state)(3) 400 400 mA
en Output noise voltage (RMS) BW = 300 Hz to 50 kHz, COUT = 10 µF 160 160 µVRMS
ΔVOUT/ΔVIN Ripple rejection ƒ = 1 kHz, COUT = 10 µF 65 65 dB
ΔVOUT/ΔTD Output voltage temperature coefficient See(4) 20 20 ppm/°C
FEEDBACK PIN
VFB FEEDBACK pin voltage 1.21 1.23 1.25 1.2 1.23 1.26 V
–40°C ≤ TJ ≤ 125°C 1.2 1.26 1.19 1.27
See(5) 1.19 1.28 1.18 1.29
ΔVFB/ΔT FEEDBACK pin voltage temperature coefficient See(6) 20 20 ppm/°C
IFB FEEDBACK pin bias current IOUT = 200 mA 150 330 150 330 nA
IOUT = 200 mA
–40°C ≤ TJ ≤ 125°C
760 760
ΔIFB/ΔT FEEDBACK pin bias current temperature coefficient See(6) 0.1 0.1 nA/°C
SHUTDOWN INPUT
VSD SD Input voltage(7) VH = Output ON 1.4 1.4 V
VH = Output ON
–40°C ≤ TJ ≤ 125°C
1.6 1.6
VL = Output OFF 0.55 0.55 µA
VL = Output OFF
–40°C ≤ TJ ≤ 125°C
0.18 0.18
ISD SD Input current VSD = 0 V 0 0 V
VSD = 0 V, –40°C ≤ TJ ≤ 125°C –1 –1
VSD = 5 V 5 5 µA
VSD = 5 V, –40°C ≤ TJ ≤ 125°C 15 15
ERROR COMPARATOR
IOH Output HIGH leakage VOH = 16 V 0.01 1 0.001 1 µA
VOH = 16 V, –40°C ≤ TJ ≤ 125°C 2 0.001 2
VOL Output LOW voltage VIN = VOUT(NOM) − 0.5 V
IOUT(COMP) = 300 µA
150 220 150 220 µA
VIN = VOUT(NOM) − 0.5 V
IOUT(COMP) = 300 µA
–40°C ≤ TJ ≤ 125°C
350 350 mV
VTHR(MAX) Upper threshold voltage −5.5 −4.6 −3.5 −5.5 −4.6 −3.5 %VOUT
–40°C ≤ TJ ≤ 125°C −7.7 −2.5 −7.7 −2.5
VTHR(MIN) Lower threshold voltage −8.9 −6.6 −4.9 −8.9 −6.6 −4.9 %VOUT
–40°C ≤ TJ ≤ 125°C −13 −3.3 −13 −3.3
HYST Hysteresis 2 2
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate TI’s Average Outgoing Quality Level (AOQL).
(2) Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below the value measured with a 1-V differential.
(3) See the Typical Characteristics section.
(4) Temperature coefficient is defined as the maximum (worst-case) change divided by the total temperature range.
(5) VFB ≤ VOUT ≤ (VIN − 1), 2.5 V ≤ VIN ≤ 16 V, 100 μA ≤ IL ≤ 200 mA, TJ ≤ 125°C.
(6) Temperature coefficient is defined as the maximum (worst-case) change divided by the total temperature range.
(7) To prevent mis-operation, the SHUTDOWN pin must be driven by a signal that swings above VH and below VL with a slew rate not less than 40 mV/μs (see Application and Implementation).

6.6 Typical Characteristics

Unless otherwise specified: TA = 25°C, COUT = 4.7 µF, CIN = 2.2 µF, SD is tied to VIN, VIN = VO(NOM) + 1 V, IL = 1 mA.
LP2986 1293508.png
Figure 1. VOUT vs Temperature
LP2986 1293510.png
Figure 3. Dropout Voltage vs Load Current
LP2986 1293512.png
Figure 5. Ground Pin Current vs Temperature And Load
LP2986 1293514.png
Figure 7. Input Current vs VIN
LP2986 1293521.png
Figure 9. Turnon Waveform
LP2986 1293524.png
Figure 11. Short-Circuit Current
LP2986 1293526.png
Figure 13. Short-Circuit Current vs Output Voltage
LP2986 1293528.png
Figure 15. DC Load Regulation
LP2986 1293530.png
Figure 17. Feedback Bias Current vs Temperature
LP2986 1293532.png
Figure 19. Shutdown Voltage vs Temperature
LP2986 1293534.png
Figure 21. Output Noise Density
LP2986 1293536.png
Figure 23. Output Impedance vs Frequency
LP2986 1293516.png
Figure 25. Load Transient Response
LP2986 1293518.png
Figure 27. Line Transient Response
LP2986 1293509.png
Figure 2. Dropout Voltage vs Temperature
LP2986 1293513.png
Figure 4. Dropout Characteristics
LP2986 1293511.png
Figure 6. Ground Pin Current vs Load Current
LP2986 1293515.png
Figure 8. Input Current vs VIN
LP2986 1293523.png
Figure 10. Turnoff Waveform
LP2986 1293525.png
Figure 12. Short-Circuit Current
LP2986 1293527.png
Figure 14. Instantaneous Short-Circuit Current vs Temperature
LP2986 1293529.png
Figure 16. Feedback Bias Current vs Load
LP2986 1293531.png
Figure 18. SHUTDOWN Pin Current vs SHUTDOWN Pin Voltage
LP2986 1293537.png
Figure 20. Input-to-Output Leakage vs Temperature
LP2986 1293535.png
Figure 22. Output Impedance vs Frequency
LP2986 1293533.png
Figure 24. Ripple Rejection
LP2986 1293517.png
Figure 26. Load Transient Response
LP2986 1293520.png
Figure 28. Line Transient Response