SNVS083O February   2005  – March 2015 LP2989

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 High-Accuracy Output Voltage
      2. 7.3.2 Sleep Mode
      3. 7.3.3 Error Detection Comparator Output
      4. 7.3.4 Short Circuit Protection (Current Limit)
      5. 7.3.5 Thermal Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operation With 16 V ≥ VIN > VOUT(TARGET) + 1 V
      2. 7.4.2 Operation with Shutdown Control
      3. 7.4.3 Shutdown Input Operation
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 WSON Package Devices
        2. 8.2.2.2 External Capacitors
          1. 8.2.2.2.1 Input Capacitor
          2. 8.2.2.2.2 Output Capacitor
          3. 8.2.2.2.3 Noise Bypass Capacitor
        3. 8.2.2.3 Capacitor Characteristics
          1. 8.2.2.3.1 Ceramic
          2. 8.2.2.3.2 Tantalum
          3. 8.2.2.3.3 Film
        4. 8.2.2.4 Reverse Input-Output Voltage
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

If Military/Aerospace specified devices are required contact the Texas Instruments Sales Office/Distributors for availability and specifications.(1)
MIN MAX UNIT
Operating junction temperature –40 125 °C
Power dissipation(2) Internally Limited
Input supply voltage Survival –0.3 16 V
SENSE pin –0.3 6 V
Output voltage Survival(3) –0.3 16 V
IOUT (Survival) Short-circuit protected
Input-output voltage Survival(4) –0.3 16 V
Storage temperature range, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(MAX), the junction-to-ambient thermal resistance, RθJA, and the ambient temperature, TA. The maximum allowable power dissipation at any ambient temperature is calculated using: P(MAX) = (TJ(MAX) – TA) / RθJA. The value RθJA for the WSON (NGN) package is specifically dependent on PCB trace area, trace material, and the number of layers and thermal vias. For improved thermal resistance and power dissipation for the WSON package, refer to Application Note AN-1187 Leadless Leadframe Package (LLP) (SNOA401).. Exceeding the maximum allowable power dissipation will cause excessive die temperature, and the regulator will go into thermal shutdown.
(3) If used in a dual-supply system where the regulator load is returned to a negative supply, the LP2989 output must be diode-clamped to ground.
(4) The output PNP structure contains a diode between the IN and OUT pins that is normally reverse-biased. Forcing the output above the input will turn on this diode and may induce a latch-up mode which can damage the part.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Operating junction temperature –40 125 °C
Operating input supply voltage 2.1 16 V

6.4 Thermal Information

THERMAL METRIC(1) LP2989 UNIT
WSON (NGN) SOIC (D) VSSOP (DGK)
8 PINS 8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance, High-K 34.8  114.5  156.5  °C/W
RθJC(top) Junction-to-case (top) thermal resistance 28.4  61.1  51.0 
RθJB Junction-to-board thermal resistance 12.0  55.6  76.5 
ψJT Junction-to-top characterization parameter 0.2  9.7  4.9 
ψJB Junction-to-board characterization parameter 12.2  54.9  75.2 
RθJC(bot) Junction-to-case (bottom) thermal resistance 1.3  n/a  n/a 
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Unless otherwise specified: TJ = 25°C, VIN = VOUT(NOM) + 1 V, IOUT = 1 mA, COUT = 4.7 µF, CIN = 2.2 µF, VSD = 2 V.
PARAMETER TEST CONDITIONS LP2989AI-X.X(1) LP2989I-X.X(1) UNIT
MIN TYP MAX MIN TYP MAX
VOUT Output voltage tolerance −0.75 0.75 −1.25 1.25 %VNOM
1 mA < IOUT < 500 mA, VOUT(NOM) + 1 V ≤ VIN ≤ 16 V −1.5 1.5 −2.5 2.5
1 mA < IOUT < 500 mA, VOUT(NOM) + 1 V ≤ VIN ≤ 16 V, –40°C ≤ TJ ≤ 125°C −4 2.5 −5 3.5
1 mA < IOUT < 500 mA, VOUT(NOM) + 1 V ≤ VIN ≤ 16 V, −25°C ≤ TJ ≤ 125°C −3.5 2.5 −4.5 3.5
ΔVOUT/ΔVIN Output voltage line regulation VOUT(NOM) + 1 V ≤ VIN ≤ 16 V 0.005 0.014 0.005 0.014 %/V
VOUT(NOM) + 1 V ≤ VIN ≤ 16 V, –40°C ≤ TJ ≤ 125°C 0.005 0.032 0.005 0.032
ΔVOUT/ΔIOUT Load regulation 1 mA < IOUT < 500 mA 0.4 0.4 %VNOM
VIN – VOUT Dropout voltage(2) IOUT = 100 µA 1 3 1 3 mV
IOUT = 100 µA, –40°C ≤ TJ ≤ 125°C 1 4 1 4
IOUT = 200 mA 150 200 150 200 mV
IOUT = 200 mA, –40°C ≤ TJ ≤ 125°C 150 300 150 300
IOUT = 500 mA 310 425 310 425 mV
IOUT = 500 mA, –40°C ≤ TJ ≤ 125°C 310 650 310 650
IGND Ground pin current IOUT = 100 µA 110 175 110 175 µA
IOUT = 100 µA, –40°C ≤ TJ ≤ 125°C 110 200 110 200
IOUT= 200 mA 1 2 1 2 mA
IOUT = 200 mA, –40°C ≤ TJ ≤ 125°C 1 3.5 1 3.5
IOUT = 500 mA 3 6 3 6 mA
IOUT = 500 mA, –40°C ≤ TJ ≤ 125°C 3 9 3 9
VSD < 0.18 V, –40°C ≤ TJ ≤ 125°C 0.5 2 0.5 2 µA
VSD < 0.4 V 0.05 0.8 0.05 0.8
IOUT(PK) Peak output current VOUT ≥ VOUT(NOM) − 5% 600 800 600 800 mA
IOUT(MAX) Short circuit current RL = 0 (Steady State)(4) 1000 1000 mA
en Output noise voltage (RMS) BW = 100 Hz to 100 kHz, COUT = 10 µF, CBYPASS = .01 µF, VOUT = 2.5 V 18 18 µV(RMS)
ΔVOUT/ΔVIN Ripple Rejection f = 1 kHz, COUT = 10 µF 60 60 dB
ΔVOUT/ΔTD Output voltage temperature coefficient See(3), –40°C ≤ TJ ≤ 125°C 20 20 ppm/°C
SHUTDOWN INPUT
VSD SD Input voltage VH = Output ON 1.4 1.4 V
VH = Output ON, –40°C ≤ TJ ≤ 125°C 1.6 1.6
VL = Output OFF 0.5 0.5
VL = Output OFF, IIN ≤ 2 µA, –40°C ≤ TJ ≤ 125°C 0.18 0.18
ISD SD Input current VSD = 0 0.001 0.001 µA
VSD = 0, –40°C ≤ TJ ≤ 125°C −1 −1
VSD = 5 V 5 5
VSD = 5 V, –40°C ≤ TJ ≤ 125°C 15 15
ERROR COMPARATOR
IOH Output “HIGH” leakage VOH = 16 V 0.001 1 0.001 1 µA
VOH = 16 V, –40°C ≤ TJ ≤ 125°C 0.001 2 0.001 2
VOL Output “LOW” voltage VIN = VOUT(NOM) − 0.5 V, IOUT(COMP) = 150 µA 150 220 150 220 mV
VIN = VOUT(NOM) − 0.5 V, IOUT(COMP) = 150 µA, –40°C ≤ TJ ≤ 125°C 150 350 150 350
VTHR(MAX) Upper threshold voltage −6 −4.8 −3.5 −6 −4.8 −3.5 %VOUT
–40°C ≤ TJ ≤ 125°C −8.3 −4.8 −2.5 −8.3 −4.8 −2.5
VTHR(MIN) Lower threshold voltage −8.9 −6.6 −4.9 −8.9 −6.6 −4.9 %VOUT
–40°C ≤ TJ ≤ 125°C −13 −6.6 −3 −13 −6.6 −3
HYST Hysteresis 2
(1) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate TI’s Average Outgoing Quality Level (AOQL).
(2) Dropout voltage is defined as the input to output differential at which the output voltage drops 100 mV below the value measured with a 1-V differential.
(3) Temperature coefficient is defined as the maximum (worst-case) change divided by the total temperature range.
(4) See the Typical Characteristics section.

6.6 Typical Characteristics

TA = 25°C, COUT = 4.7 µF, CIN = 2.2 µF, SD is tied to VIN, VIN = VOUT(NOM)+ 1 V, IOUT = 1 mA, VOUT = 2.5 V (unless otherwise specified)
LP2989 tpc_drop_char_snvs083.pngFigure 1. Dropout Characteristics
LP2989 tpc_drop_volt_load_cur_snvs083.pngFigure 3. Dropout Voltage vs Load Current
LP2989 tpc_gnd_pin_cur_load_curr_snvs083.pngFigure 5. Ground Pin Current vs Load Current
LP2989 tpc_in_cur_vin_2_snvs083.pngFigure 7. Input Current vs VIN
LP2989 tpc_line_trans_rsp_1_snvs083.pngFigure 9. Line Transient Response
LP2989 tpc_line_trans_rsp_3_snvs083.pngFigure 11. Line Transient Response
LP2989 tpc_load_trans_rsp_1_snvs083.pngFigure 13. Load Transient Response
LP2989 tpc_short_circ_cur_1_snvs083.pngFigure 15. Short Circuit Current
LP2989 tpc_short_circ_cur_2_snvs083.pngFigure 17. Short Circuit Current
LP2989 tpc_rip_rej_1_snvs083.pngFigure 19. Ripple Rejection
LP2989 tpc_rip_rej_3_snvs083.pngFigure 21. Ripple Rejection
LP2989 tpc_rip_rej_5_snvs083.pngFigure 23. Ripple Rejection
LP2989 tpc_rip_rej_7_snvs083.pngFigure 25. Ripple Rejection
LP2989 tpc_rip_rej_load_snvs083.pngFigure 27. Ripple Rejection vs Load
LP2989 tpc_out_noise_dens_2_snvs083.pngFigure 29. Output Noise Density
LP2989 tpc_on_wvfm_2_snvs083.pngFigure 31. Turn-ON Waveform
LP2989 tpc_on_wvfm_4_snvs083.pngFigure 33. Turn-ON Waveform
LP2989 tpc_i_gnd_shut_2_snvs083.pngFigure 35. IGND vs Shutdown
LP2989 tpc_i_gnd_shut_4_snvs083.pngFigure 37. IGND vs Shutdown
LP2989 tpc_typ_temp_vout_snvs083.pngFigure 39. Typical Temperature vs VOUT (LP2989-2.5)
LP2989 tpc_drop_volt_temp_snvs083.pngFigure 2. Dropout Voltage vs Temperature
LP2989 tpc_gnd_pin_cur_temp_load_snvs083.pngFigure 4. GND Pin Current vs Temperature and Load
LP2989 tpc_in_cur_vin_1_snvs083.pngFigure 6. Input Current vs VIN
LP2989 tpc_in_cur_vin_3_snvs083.pngFigure 8. Input Current vs VIN
LP2989 tpc_line_trans_rsp_2_snvs083.pngFigure 10. Line Transient Response
LP2989 tpc_line_trans_rsp_4_snvs083.pngFigure 12. Line Transient Response
LP2989 tpc_load_trans_rsp_2_snvs083.pngFigure 14. Load Transient Response
LP2989 tpc_short_circ_cur_temp_snvs083.pngFigure 16. Short Circuit Current vs Temperature
LP2989 tpc_short_circ_cur_vout_snvs083.pngFigure 18. Short Circuit Current vs VOUT
LP2989 tpc_rip_rej_2_snvs083.pngFigure 20. Ripple Rejection
LP2989 tpc_rip_rej_4_snvs083.pngFigure 22. Ripple Rejection
LP2989 tpc_rip_rej_6_snvs083.pngFigure 24. Ripple Rejection
LP2989 tpc_rip_rej_drop_snvs083.pngFigure 26. Ripple Rejection in Dropout
LP2989 tpc_out_noise_dens_1_snvs083.pngFigure 28. Output Noise Density
LP2989 tpc_on_wvfm_1_snvs083.pngFigure 30. Turn-ON Waveform
LP2989 tpc_on_wvfm_3_snvs083.pngFigure 32. Turn-ON Waveform
LP2989 tpc_i_gnd_shut_1_snvs083.pngFigure 34. IGND vs Shutdown
LP2989 tpc_i_gnd_shut_3_snvs083.pngFigure 36. IGND vs Shutdown
LP2989 tpc_vout_shut_snvs083.pngFigure 38. VOUT vs Shutdown