SLVSEB8C October   2018  – July 2024 LP5018 , LP5024

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 PWM Control for Each Channel
        1. 7.3.1.1 Independent Color Mixing Per RGB LED Module
        2. 7.3.1.2 Independent Intensity Control Per RGB LED Module
          1. 7.3.1.2.1 Intensity-Control Register Configuration
          2. 7.3.1.2.2 Logarithmic- or Linear-Scale Intensity Control
        3. 7.3.1.3 12-Bit, 29-kHz PWM Generator Per Channel
          1. 7.3.1.3.1 PWM Generator
        4. 7.3.1.4 PWM Phase-Shifting
      2. 7.3.2 LED Bank Control
      3. 7.3.3 Current Range Setting
      4. 7.3.4 Automatic Power-Save Mode
      5. 7.3.5 Protection Features
        1. 7.3.5.1 Thermal Shutdown
        2. 7.3.5.2 UVLO
    4. 7.4 Device Functional Modes
    5. 7.5 Programming
      1. 7.5.1 I2C Interface
        1. 7.5.1.1 Data Validity
        2. 7.5.1.2 Start and Stop Conditions
        3. 7.5.1.3 Transferring Data
        4. 7.5.1.4 I2C Slave Addressing
        5. 7.5.1.5 Control-Register Write Cycle
        6. 7.5.1.6 Control-Register Read Cycle
        7. 7.5.1.7 Auto-Increment Feature
    6. 7.6 Register Maps
      1. 7.6.1  DEVICE_CONFIG0 (Address = 0h) [reset = 0h]
      2. 7.6.2  DEVICE_CONFIG1 (Address = 1h) [reset = 3Ch]
      3. 7.6.3  LED_CONFIG0 (Address = 2h) [reset = 00h]
      4. 7.6.4  BANK_BRIGHTNESS (Address = 3h) [reset = FFh]
      5. 7.6.5  BANK_A_COLOR (Address = 4h) [reset = 00h]
      6. 7.6.6  BANK_B_COLOR (Address = 5h) [reset = 00h]
      7. 7.6.7  BANK_C_COLOR (Address = 6h) [reset = 00h]
      8. 7.6.8  LED0_BRIGHTNESS (Address = 7h) [reset = FFh]
      9. 7.6.9  LED1_BRIGHTNESS (Address = 8h) [reset = FFh]
      10. 7.6.10 LED2_BRIGHTNESS (Address = 9h) [reset = FFh]
      11. 7.6.11 LED3_BRIGHTNESS (Address = 0Ah) [reset = FFh]
      12. 7.6.12 LED4_BRIGHTNESS (Address = 0Bh) [reset = FFh]
      13. 7.6.13 LED5_BRIGHTNESS (Address = 0Ch) [reset = FFh]
      14. 7.6.14 LED6_BRIGHTNESS (Address = 0Dh) [reset = FFh]
      15. 7.6.15 LED7_BRIGHTNESS (Address = 0Eh) [reset = FFh]
      16. 7.6.16 OUT0_COLOR (Address = 0Fh) [reset = 00h]
      17. 7.6.17 OUT1_COLOR (Address = 10h) [reset = 00h]
      18. 7.6.18 OUT2_COLOR (Address = 11h) [reset = 00h]
      19. 7.6.19 OUT3_COLOR (Address = 12h) [reset = 00h]
      20. 7.6.20 OUT4_COLOR (Address = 13h) [reset = 00h]
      21. 7.6.21 OUT5_COLOR (Address = 14h) [reset = 00h]
      22. 7.6.22 OUT6_COLOR (Address = 15h) [reset = 00h]
      23. 7.6.23 OUT7_COLOR (Address = 16h) [reset = 00h]
      24. 7.6.24 OUT8_COLOR (Address = 17h) [reset = 00h]
      25. 7.6.25 OUT9_COLOR (Address = 18h) [reset = 00h]
      26. 7.6.26 OUT10_COLOR (Address = 19h) [reset = 00h]
      27. 7.6.27 OUT11_COLOR (Address = 1Ah) [reset = 00h]
      28. 7.6.28 OUT12_COLOR (Address = 1Bh) [reset = 00h]
      29. 7.6.29 OUT13_COLOR (Address = 1Ch) [reset = 00h]
      30. 7.6.30 OUT14_COLOR (Address = 1Dh) [reset = 00h]
      31. 7.6.31 OUT15_COLOR (Address = 1Eh) [reset = 00h]
      32. 7.6.32 OUT16_COLOR (Address = 1Fh) [reset = 00h]
      33. 7.6.33 OUT17_COLOR (Address = 20h) [reset = 00h]
      34. 7.6.34 OUT18_COLOR (Address = 21h) [reset = 00h]
      35. 7.6.35 OUT19_COLOR (Address = 22h) [reset = 00h]
      36. 7.6.36 OUT20_COLOR (Address = 23h) [reset = 00h]
      37. 7.6.37 OUT21_COLOR (Address = 24h) [reset = 00h]
      38. 7.6.38 OUT22_COLOR (Address = 25h) [reset = 00h]
      39. 7.6.39 OUT23_COLOR (Address = 26h) [reset = 00h]
      40. 7.6.40 RESET (Address = 27h) [reset = 00h]
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Examples
  10. Device and Documentation Support
    1. 9.1 Related Links
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

PWM Control for Each Channel

Most traditional LED drivers are designed for the single-color LEDs, in which the high-resolution PWM generator is used for intensity control only. However, for RGB LEDs, both the color mixing and intensity control should be addressed to achieve the target effect. With the traditional solution, the users must handle the color mixing and intensity control simultaneously with a single PWM register. Several undesired effects occur: the limited dimming steps, the complex software design, and the color distortion when using a logarithmic scale control.

The LP50xx device is designed with independent color mixing and intensity control, which makes the RGB LED effects fancy and the control experience straightforward. With the inputs of the color-mixing register and the intensity-control register, the final PWM generator output for each channel is 12-bit resolution and 29kHz dimming frequency, which helps achieve a smooth dimming effect and eliminates audible noise. See Figure 7-1.

LP5018 LP5024 PWM Control Scheme for Each ChannelFigure 7-1 PWM Control Scheme for Each Channel