SNVSCE4A may   2023  – august 2023 LP5861T

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Device Comparison
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7.     15
    8. 7.7 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Analog Dimming (Current Gain Control)
      2. 8.3.2 PWM Dimming
      3. 8.3.3 ON and OFF Control
      4. 8.3.4 Data Refresh Mode
      5. 8.3.5 Full Addressable SRAM
      6. 8.3.6 Protections and Diagnostics
    4. 8.4 Device Functional Modes
    5. 8.5 Programming
    6. 8.6 Register Maps
      1. 8.6.1 CONFIG Registers
      2. 8.6.2 GROUP Registers
      3. 8.6.3 DOTGROUP Registers
      4. 8.6.4 DOTONOFF Registers
      5. 8.6.5 FAULT Registers
      6. 8.6.6 RESET Registers
      7. 8.6.7 DC Registers
      8. 8.6.8 PWM Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Application
      2. 9.2.2 Design Requirements
      3. 9.2.3 Detailed Design Procedure
        1. 9.2.3.1 Program Procedure
      4. 9.2.4 Application Performance Plots
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Detailed Design Procedure

LP5861T requires an external capacitor CVCAP, whose value is 1 μF connected from VCAP to GND for proper operation of internal LDO. The external capacitor must be placed as close to the device as possible.

TI recommends 1-μF capacitors to be placed between VCC / VLED with GND, and 1-nF capacitor placed between VIO with GND. Place the capacitors as close to the device as possible.

Pullup resistors Rpull-up are requirement for SCL and SDA when using I2C as communication method. In typical applications, TI recommends 1.8-kΩ to 4.7-kΩ resistors.

To decrease thermal dissipation from device to ambient, resistors RCS an optionally be placed in serial with the LED. Voltage drop on these resistors must leave enough margins for VSAT to ensure the device work normally.