SNOSB14E August   2009  – July 2024 LPV521

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
    4. 6.4 Device Functional Modes
      1. 6.4.1 Input Stage
      2. 6.4.2 Output Stage
  8. Applications and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Driving Capacitive Load
      2. 7.1.2 EMI Suppression
    2. 7.2 Typical Applications
      1. 7.2.1 60Hz Twin T-Notch Filter
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
        3. 7.2.1.3 Application Curve
      2. 7.2.2 Portable Gas Detection Sensor
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
        3. 7.2.2.3 Application Curve
      3. 7.2.3 High-Side Battery Current Sensing
        1. 7.2.3.1 Design Requirements
        2. 7.2.3.2 Detailed Design Procedure
        3. 7.2.3.3 Application Curve
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • P|8
  • DCK|5
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Design Requirements

The rail-to-rail common-mode input range and the very low quiescent current make the LPV521 an excellent choice for use in high-side and low-side battery current-sensing applications. The high-side current-sensing circuit in Figure 7-7 is commonly used in a battery charger to monitor the charging current to prevent overcharging. A sense resistor RSENSE is connected in series with the battery.