SNOSAI6J September   2005  – August 2016 LPV7215

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics: 1.8 V
    6. 6.6 Electrical Characteristics: 2.7 V
    7. 6.7 Electrical Characteristics: 5 V
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Input Stage
      2. 7.3.2 Output Stage
      3. 7.3.3 Output Current
      4. 7.3.4 Response Time
    4. 7.4 Device Functional Modes
      1. 7.4.1 Capacitive and Resistive Loads
      2. 7.4.2 Noise
      3. 7.4.3 Hysteresis
      4. 7.4.4 Inverting Comparator With Hysteresis
      5. 7.4.5 Noninverting Comparator With Hysteresis
      6. 7.4.6 Zero Crossing Detector
      7. 7.4.7 Threshold Detector
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Square Wave Generator
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Window Detector
      3. 8.2.3 Crystal Oscillator
      4. 8.2.4 IR Receiver
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
      2. 11.1.2 Documentation Support
        1. 11.1.2.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VIN differential −2.5 2.5 V
Supply voltage (V+ - V) 6 V
Voltage at input and output pins V − 0.3 V+ + 0.3 V
Junction temperature, TJ (2) 150 °C
Storage temperature, Tstg −65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The maximum power dissipation is a function of TJ(MAX), θJA. The maximum allowable power dissipation at any ambient temperature is PD = (TJ(MAX) – TA)/ θJA . All numbers apply for packages soldered directly onto a PCB.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM)(1) ±2000 V
Machine model (MM)(2) ±200
(1) Human-body model, applicable std. MIL-STD-883, Method 3015.7.
(2) Machine model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC)Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Temperature(1) –40 125 °C
Supply voltage (V+ – V) 1.8 5.5 V
(1) The maximum power dissipation is a function of TJ(MAX), θJA. The maximum allowable power dissipation at any ambient temperature is PD = (TJ(MAX) – TA)/ θJA . All numbers apply for packages soldered directly onto a PCB.

6.4 Thermal Information

THERMAL METRIC(1) LPV7215 UNIT
DBV (SOT-23) DCK (SC70)
5 PINS 5 PINS
RθJA Junction-to-ambient thermal resistance(2) 234 456 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 153 110.8 °C/W
RθJB Junction-to-board thermal resistance 51.7 59.8 °C/W
ψJT Junction-to-top characterization parameter 38 3.6 °C/W
ψJB Junction-to-board characterization parameter 51.2 59 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a n/a °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
(2) The maximum power dissipation is a function of TJ(MAX), θJA. The maximum allowable power dissipation at any ambient temperature is PD = (TJ(MAX) – TA)/ θJA . All numbers apply for packages soldered directly onto a PCB.

6.5 Electrical Characteristics: 1.8 V

Unless otherwise specified, all limits are specified for TA = 25°C, V+ = 1.8V, V = 0 V, and VCM = V+/2, VO= V.(1)
PARAMETER TEST CONDITIONS MIN (2) TYP (3) MAX (2) UNIT
IS Supply current VCM = 0.3 V TA = 25°C 580 750 nA
Temperature extremes 1050
VCM = 1.5 V TA = 25°C 790 980
Temperature extremes 1300
VOS Input offset voltage VCM = 0 V TA = 25°C ±0.3 ±6 mV
Temperature extremes ±8
VCM = 1.8 V TA = 25°C ±0.4 ±5
Temperature extremes ±7
TCVOS Input offset average drift See (4) ±1 µV/C
IB Input bias current (5) VCM = 1.6 V −40 fA
IOS Input offset current 10 fA
CMRR Common-mode rejection ratio VCM Stepped from 0 V to 0.7 V TA = 25°C 66 88 dB
Temperature extremes 62
VCM Stepped from 1.2 V to 1.8 V TA = 25°C 68 87
Temperature extremes 62
VCM Stepped from 0 V to 1.8 V TA = 25°C 44 77
Temperature extremes 43
PSRR Power supply rejection ratio V+ = 1.8 V to 5.5 V, VCM = 0 V TA = 25°C 66 82 dB
Temperature extremes 63
CMVR Input common-mode voltage range CMRR ≥ 40 dB Temperature Extremes –0.1 1.9 V
AV Voltage gain 120 dB
VO Output swing high IO = 500 µA TA = 25°C 1.63 1.69 V
Temperature extremes 1.58
IO = 1 mA TA = 25°C 1.46 1.6
Temperature extremes 1.37
Output swing low IO = −500 µA TA = 25°C 88 180 mV
Temperature extremes 230
IO = −1 mA TA = 25°C 180 310
Temperature extremes 400
IOUT Output current Source
VO = V+/2
TA = 25°C 1.75 2.26 mA
Temperature extremes 1.3
Sink
VO = V+/2
TA = 25°C 2.35 3.1
Temperature extremes 1.45
Propagation delay
(high to low)
Overdrive = 10 mV 13 µs
Overdrive = 100 mV TA = 25°C 4.5 6.5
Temperature extremes 9
Propagation delay
(low to high)
Overdrive = 10 mV 12.5 µs
Overdrive = 100 mV TA = 25°C 6.6 9
Temperature extremes 12
trise Rise time Overdrive = 10 mV
CL = 30 pF, RL = 1 MΩ
80 ns
Overdrive = 100 mV
CL = 30 pF, RL = 1 MΩ
75
tfall Fall time Overdrive = 10 mV
CL = 30 pF, RL = 1 MΩ
70 ns
Overdrive = 100 mV
CL = 30 pF, RL = 1 MΩ
65
(1) Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device.
(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlations using statistical quality control (SQC) method.
(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and also depend on the application and configuration. The typical values are not tested and are not specified on shipped production material.
(4) Offset voltage average drift determined by dividing the change in VOS at temperature extremes into the total temperature change.
(5) Positive current corresponds to current flowing into the device.

6.6 Electrical Characteristics: 2.7 V

Unless otherwise specified, all limits are specified for TA = 25°C, V+ = 2.7 V, V = 0 V, and VCM = V+/2, VO= V.(1)
PARAMETER TEST CONDITIONS MIN (2) TYP (3) MAX (2) UNIT
IS Supply current VCM = 0.3 V TA = 25°C 605 780 nA
Temperature extremes 1100
VCM = 2.4 V TA = 25°C 815 1010
Temperature extremes 1350
VOS Input offset voltage VCM = 0 V TA = 25°C ±0.3 ±6 mV
Temperature extremes ±8
VCM = 2.7 V TA = 25°C ±0.3 ±5
Temperature extremes ±7
TCVOS Input offset average drift See (4) ±1 µV/C
IB Input bias current (5) VCM = 1.8 V −40 fA
IOS Input offset current 20 fA
CMRR Common-mode rejection ratio VCM Stepped from 0 V to 1.6 V TA = 25°C 72 90 dB
Temperature extremes 66
VCM Stepped from 2.1V to 2.7V TA = 25°C 71 94
Temperature extremes 63
VCM Stepped from 0 V to 2.7 V TA = 25°C 47 80
Temperature extremes 46
PSRR Power supply rejection ratio V+ = 1.8 V to 5.5 V, VCM = 0 V TA = 25°C 66 82 dB
Temperature extremes 63
CMVR Input common-mode voltage range CMRR ≥ 40 dB Temperature extremes −0.1 2.8 V
AV Voltage gain 120 dB
VO Output swing high IO = 500 µA TA = 25°C 2.57 2.62 V
Temperature extremes 2.53
IO = 1 mA TA = 25°C 2.47 2.53
Temperature extremes 2.4
Output swing low IO = −500 µA TA = 25°C 60 130 mV
Temperature extremes 190
IO = −1 mA TA = 25°C 120 250
Temperature extremes 330
IOUT Output current Source
VO = V+/2
TA = 25°C 4.5 5.7 mA
Temperature extremes 3.4
Sink
VO = V+/2
TA = 25°C 5.6 7.5
Temperature extremes 3.2
Propagation delay
(high to low)
Overdrive = 10 mV 14.5 µs
Overdrive = 100 mV TA = 25°C 5.8 8.5
Temperature extremes 10.5
Propagation delay
(low to high)
Overdrive = 10 mV 15
Overdrive = 100 mV TA = 25°C 7.5 10
Temperature extremes 12.5
trise Rise time Overdrive = 10 mV
CL = 30 pF, RL = 1 MΩ
90 ns
Overdrive = 100 mV
CL = 30 pF, RL = 1 MΩ
85
tfall Fall time Overdrive = 10 mV
CL = 30 pF, RL = 1 MΩ
85 ns
Overdrive = 100 mV
CL = 30 pF, RL = 1 MΩ
75
(1) Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device.
(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlations using statistical quality control (SQC) method.
(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and also depend on the application and configuration. The typical values are not tested and are not specified on shipped production material.
(4) Offset voltage average drift determined by dividing the change in VOS at temperature extremes into the total temperature change.
(5) Positive current corresponds to current flowing into the device.

6.7 Electrical Characteristics: 5 V

Unless otherwise specified, all limits are specified for TA = 25°C, V+ = 5 V, V = 0 V, and VCM = V+/2, VO= V. (1)
PARAMETER TEST CONDITIONS MIN (2)
TYP (3)
MAX (2)
UNIT
IS Supply current VCM = 0.3 V TA = 25°C 612 790 nA
Temperature extremes 1150
VCM = 4.7 V TA = 25°C 825 1030
Temperature extremes 1400
VOS Input offset voltage VCM = 0 V TA = 25°C ±0.3 ±6 mV
Temperature extremes ±8
VCM = 5 V TA = 25°C ±5
Temperature extremes ±7
TCVOS Input offset average drift See (4) ±1 µV/C
IB Input bias current (5) VCM = 4.5 V −400 fA
IOS Input offset current 20 fA
CMRR Common-mode rejection ratio VCM Stepped from 0 V to 3.9 V TA = 25°C 72 98 dB
Temperature extremes 66
VCM Stepped from 4.4 V to 5 V TA = 25°C 73 92
Temperature extremes 67
VCM Stepped from 0 V to 5 V TA = 25°C 53 82
Temperature extremes 49
PSRR Power supply rejection ratio V+ = 1.8 V to 5.5 V, VCM = 0 V TA = 25°C 66 82 dB
Temperature extremes 63
CMVR Input common-mode voltage range CMRR ≥ 40 dB Temperature extremes −0.1 5.1 V
AV Voltage gain 120 dB
VO Output swing high IO = 500 µA TA = 25°C 4.9 4.94 V
Temperature extremes 4.86
IO = 1 mA TA = 25°C 4.82 4.89
Temperature extremes 4.77
Output swing low IO = −500 µA TA = 25°C 43 90 mV
Temperature extremes 130
IO = −1 mA TA = 25°C 88 170
Temperature extremes 230
IOUT Output current Source
VO = V+/2
TA = 25°C 13 17 mA
Temperature extremes 7.5
Sink
VO = V+/2
TA = 25°C 14.5 19
Temperature extremes 8.5
Propagation delay
(high to low)
Overdrive = 10 mV 18 µs
Overdrive = 100 mV TA = 25°C 7.7 13.5
Temperature extremes 16
Propagation delay
(low to high)
Overdrive = 10 mV 30 µs
Overdrive = 100 mV TA = 25°C 12 15
Temperature extremes 20
trise Rise time Overdrive = 10 mV
CL = 30 pF, RL = 1 MΩ
100 ns
Overdrive = 100 mV
CL = 30 pF, RL = 1 MΩ
100
tfall Fall time Overdrive = 10 mV
CL = 30 pF, RL = 1 MΩ
115 ns
Overdrive = 100 mV
CL = 30 pF, RL = 1 MΩ
95
(1) Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device.
(2) Limits are 100% production tested at 25°C. Limits over the operating temperature range are specified through correlations using statistical quality control (SQC) method.
(3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and also depend on the application and configuration. The typical values are not tested and are not specified on shipped production material.
(4) Offset voltage average drift determined by dividing the change in VOS at temperature extremes into the total temperature change.
(5) Positive current corresponds to current flowing into the device.

6.8 Typical Characteristics

At TJ = 25°C unless otherwise specified.
LPV7215 20123605.gif
Figure 1. Supply Current vs Supply Voltage
LPV7215 20123607.gif
Figure 3. Supply Current vs Common-Mode Input
LPV7215 20123609.gif
Figure 5. Short-Circuit Sinking Current vs Supply Voltage
LPV7215 20123650.gif
Figure 7. Output Voltage Low vs Sink Current
LPV7215 20123652.gif
Figure 9. Output Voltage High vs Source Current
LPV7215 20123611.gif
Figure 11. Propagation Delay vs Supply Voltage
LPV7215 20123602.gif
Figure 13. Propagation Delay vs Overdrive
LPV7215 20123614.gif
Figure 15. Propagation Delay vs Overdrive
LPV7215 20123603.gif
Figure 17. Propagation Delay vs Overdrive
LPV7215 20123623.gif
Figure 19. Propagation Delay vs Overdrive
LPV7215 20123620.gif
Figure 21. IBIAS vs VCM
LPV7215 20123619.gif
Figure 23. IBIAS vs VCM
LPV7215 20123625.gif
Figure 25. Propagation Delay vs Common-Mode Input
LPV7215 20123626.gif
Figure 27. Propagation Delay vs Common-Mode Input
LPV7215 20123606.gif
Figure 2. Supply Current vs Common-Mode Input
LPV7215 20123608.gif
Figure 4. Supply Current vs Common-Mode Input
LPV7215 20123610.gif
Figure 6. Short-Circuit Sourcing Current vs Supply Voltage
LPV7215 20123651.gif
Figure 8. Output Voltage Low vs Sink Current
LPV7215 20123653.gif
Figure 10. Output Voltage High vs Source Current
LPV7215 20123612.gif
Figure 12. Propagation Delay vs Supply Voltage
LPV7215 20123613.gif
Figure 14. Propagation Delay vs Overdrive
LPV7215 20123622.gif
Figure 16. Propagation Delay vs Overdrive
LPV7215 20123615.gif
Figure 18. Propagation Delay vs Overdrive
LPV7215 20123616.gif
Figure 20. Propagation Delay vs Resistive Load
LPV7215 20123618.gif
Figure 22. IBIAS vs VCM
LPV7215 20123624.gif
Figure 24. Propagation Delay vs Common-Mode Input
LPV7215 20123617.gif
Figure 26. Propagation Delay vs Common-Mode Input
LPV7215 20123644.gif
Figure 28. Offset Voltage vs Common-Mode Input