SNOSCZ3B August   2016  – November 2016 LPV801 , LPV802

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 Negative-Rail Sensing Input
      2. 7.4.2 Rail to Rail Output Stage
      3. 7.4.3 Design Optimization for Nanopower Operation
      4. 7.4.4 Driving Capacitive Load
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application: Three Terminal CO Gas Sensor Amplifier
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 Do's and Don'ts
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Related Links
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Features

  • Nanopower Supply Current: 320 nA/channel
  • Offset Voltage: 3.5 mV (max)
  • TcVos: 1 µV/°C
  • Unity Gain-Bandwidth: 8 kHz
  • Wide Supply Range: 1.6 V to 5.5 V
  • Low Input Bias Current : 0.1 pA
  • Unity-Gain Stable
  • Rail-to-Rail Output
  • No Output Reversals
  • EMI Protection
  • Temperature Range: –40°C to 125°C
  • Industry Standard Packages:
    • Single in 5-pin SOT-23
    • Dual in 8-pin VSSOP

Applications

  • CO and O2 Gas Detectors (TIDA-00854)
  • PIR Motion Detectors (TIDA-00489)
  • Ionization Smoke Alarms
  • Thermostats
  • IoT Remote Sensors
  • Active RFID Readers and Tags
  • Portable Medical Equipment

Description

The LPV801 (single) and LPV802 (dual) comprise a family of ultra-low-power operational amplifiers for sensing applications in battery powered wireless and low power wired equipment. With 8kHz of bandwidth from 320nA of quiescent current, the LPV80x amplifiers minimize power consumption in equipment such as CO detectors, smoke detectors and PIR motion detectors where operational battery-life is critical.

In addition to being ultra-low-power, the LPV80x amplifiers have CMOS input stages with typically femto-amp bias currents. The LPV80x amplifiers also feature a negative-rail sensing input stage and a rail-to-rail output stage that is capable of swinging within millivolts of the rails, maintaining the widest dynamic range possible. EMI protection is designed into the LPV80x in order to reduce system sensitivity to unwanted RF signals from mobile phones, WiFi, radio transmitters and tag readers.

Device Information(1)

PART NUMBER PACKAGE BODY SIZE
LPV801 SOT-23 (5) 2.90 mm x 1.60 mm
LPV802 VSSOP (8) 3.00 mm × 3.00 mm
For all available packages, see the orderable addendum at the end of the data sheet.

LPV8xx Family of Nanopower Amplifiers

PART NUMBER CHANNELS SUPPLY
CURRENT
(Typ/Ch)
OFFSET
VOLTAGE
(Max)
LPV801 1 450 nA 3.5 mV
LPV802 2 320 nA 3.5 mV
LPV811 1 450 nA 370 µV
LPV812 2 425 nA 300 µV

Nanopower Amplifier in Electrochemical Sensor

LPV801 LPV802 Typ_App_Three_Term_CO.gif

Nanopower Amplifier in PIR Motion Detector

LPV801 LPV802 Typ_App_PIR.gif