SLLSFV2 August   2023 MCF8316C-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings Auto
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Characteristics of the SDA and SCL bus for Standard and Fast mode
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Output Stage
      2. 7.3.2  Device Interface
        1. 7.3.2.1 Interface - Control and Monitoring
        2. 7.3.2.2 I2C Interface
      3. 7.3.3  Step-Down Mixed-Mode Buck Regulator
        1. 7.3.3.1 Buck in Inductor Mode
        2. 7.3.3.2 Buck in Resistor mode
        3. 7.3.3.3 Buck Regulator with External LDO
        4. 7.3.3.4 AVDD Power Sequencing from Buck Regulator
        5. 7.3.3.5 Mixed Mode Buck Operation and Control
      4. 7.3.4  AVDD Linear Voltage Regulator
      5. 7.3.5  Charge Pump
      6. 7.3.6  Slew Rate Control
      7. 7.3.7  Cross Conduction (Dead Time)
      8. 7.3.8  Motor Control Input Sources
        1. 7.3.8.1 Analog-Mode Motor Control
        2. 7.3.8.2 PWM-Mode Motor Control
        3. 7.3.8.3 I2C-based Motor Control
        4. 7.3.8.4 Frequency-Mode Motor Control
        5. 7.3.8.5 Input Reference Profiles
          1. 7.3.8.5.1 Linear Reference Profiles
          2. 7.3.8.5.2 Staircase Speed Profile
          3. 7.3.8.5.3 Forward-Reverse Speed Profile
      9. 7.3.9  Starting the Motor Under Different Initial Conditions
        1. 7.3.9.1 Case 1 – Motor is Stationary
        2. 7.3.9.2 Case 2 – Motor is Spinning in the Forward Direction
        3. 7.3.9.3 Case 3 – Motor is Spinning in the Reverse Direction
      10. 7.3.10 Motor Start Sequence (MSS)
        1. 7.3.10.1 Initial Speed Detect (ISD)
        2. 7.3.10.2 Motor Resynchronization
        3. 7.3.10.3 Reverse Drive
          1. 7.3.10.3.1 Reverse Drive Tuning
        4. 7.3.10.4 Motor Start-up
          1. 7.3.10.4.1 Align
          2. 7.3.10.4.2 Double Align
          3. 7.3.10.4.3 Initial Position Detection (IPD)
            1. 7.3.10.4.3.1 IPD Operation
            2. 7.3.10.4.3.2 IPD Release Mode
            3. 7.3.10.4.3.3 IPD Advance Angle
          4. 7.3.10.4.4 Slow First Cycle Startup
          5. 7.3.10.4.5 Open Loop
          6. 7.3.10.4.6 Transition from Open to Closed Loop
      11. 7.3.11 Closed Loop Operation
        1. 7.3.11.1 Closed Loop Acceleration/Deceleration Slew Rate
        2. 7.3.11.2 Speed PI Control
        3. 7.3.11.3 Current PI Control
        4. 7.3.11.4 Torque Mode
        5. 7.3.11.5 Overmodulation
      12. 7.3.12 Motor Parameters
        1. 7.3.12.1 Motor Resistance
        2. 7.3.12.2 Motor Inductance
        3. 7.3.12.3 Motor Back-EMF constant
      13. 7.3.13 Motor Parameter Extraction Tool (MPET)
      14. 7.3.14 Anti-Voltage Surge (AVS)
      15. 7.3.15 Active Braking
      16. 7.3.16 Output PWM Switching Frequency
      17. 7.3.17 PWM Modulation Schemes
      18. 7.3.18 Dead Time Compensation
      19. 7.3.19 Motor Stop Options
        1. 7.3.19.1 Coast (Hi-Z) Mode
        2. 7.3.19.2 Low-Side Braking
        3. 7.3.19.3 High-Side Braking
        4. 7.3.19.4 Active Spin-Down
        5. 7.3.19.5 Align Braking
      20. 7.3.20 FG Configuration
        1. 7.3.20.1 FG Output Frequency
        2. 7.3.20.2 FG during Open and Closed Loop States
        3. 7.3.20.3 FG during Fault and Idle States
      21. 7.3.21 DC Bus Current Limit
      22. 7.3.22 Protections
        1. 7.3.22.1  VM Supply Undervoltage Lockout
        2. 7.3.22.2  AVDD Undervoltage Lockout (AVDD_UV)
        3. 7.3.22.3  BUCK Under Voltage Lockout (BUCK_UV)
        4. 7.3.22.4  VCP Charge Pump Undervoltage Lockout (CPUV)
        5. 7.3.22.5  Overvoltage Protection (OVP)
        6. 7.3.22.6  Overcurrent Protection (OCP)
          1. 7.3.22.6.1 OCP Latched Shutdown (OCP_MODE = 00b)
          2. 7.3.22.6.2 OCP Automatic Retry (OCP_MODE = 01b)
        7. 7.3.22.7  Buck Overcurrent Protection
        8. 7.3.22.8  Hardware Lock Detection Current Limit (HW_LOCK_ILIMIT)
          1. 7.3.22.8.1 HW_LOCK_ILIMIT Latched Shutdown (HW_LOCK_ILIMIT_MODE = 00xxb)
          2. 7.3.22.8.2 HW_LOCK_ILIMIT Automatic recovery (HW_LOCK_ILIMIT_MODE = 01xxb)
          3. 7.3.22.8.3 HW_LOCK_ILIMIT Report Only (HW_LOCK_ILIMIT_MODE = 1000b)
          4. 7.3.22.8.4 HW_LOCK_ILIMIT Disabled (HW_LOCK_ILIMIT_MODE= 1xx1b)
        9. 7.3.22.9  Lock Detection Current Limit (LOCK_ILIMIT)
          1. 7.3.22.9.1 LOCK_ILIMIT Latched Shutdown (LOCK_ILIMIT_MODE = 00xxb)
          2. 7.3.22.9.2 LOCK_ILIMIT Automatic Recovery (LOCK_ILIMIT_MODE = 01xxb)
          3. 7.3.22.9.3 LOCK_ILIMIT Report Only (LOCK_ILIMIT_MODE = 1000b)
          4. 7.3.22.9.4 LOCK_ILIMIT Disabled (LOCK_ILIMIT_MODE = 1xx1b)
        10. 7.3.22.10 FET Thermal Warning (OTW)
        11. 7.3.22.11 FET Thermal Shutdown (TSD_FET)
        12. 7.3.22.12 Motor Lock (MTR_LCK)
          1. 7.3.22.12.1 MTR_LCK Latched Shutdown (MTR_LCK_MODE = 00xxb)
          2. 7.3.22.12.2 MTR_LCK Automatic Recovery (MTR_LCK_MODE= 01xxb)
          3. 7.3.22.12.3 MTR_LCK Report Only (MTR_LCK_MODE = 1000b)
          4. 7.3.22.12.4 MTR_LCK Disabled (MTR_LCK_MODE = 1xx1b)
        13. 7.3.22.13 Motor Lock Detection
          1. 7.3.22.13.1 Lock 1: Abnormal Speed (ABN_SPEED)
          2. 7.3.22.13.2 Lock 2: Abnormal BEMF (ABN_BEMF)
          3. 7.3.22.13.3 Lock3: No-Motor Fault (NO_MTR)
        14. 7.3.22.14 MPET Faults
        15. 7.3.22.15 IPD Faults
    4. 7.4 Device Functional Modes
      1. 7.4.1 Functional Modes
        1. 7.4.1.1 Sleep Mode
        2. 7.4.1.2 Standby Mode
        3. 7.4.1.3 Fault Reset (CLR_FLT)
    5. 7.5 External Interface
      1. 7.5.1 DRVOFF Functionality
      2. 7.5.2 DAC outputs
      3. 7.5.3 Current Sense Output
      4. 7.5.4 Oscillator Source
        1. 7.5.4.1 External Clock Source
      5. 7.5.5 External Watchdog
    6. 7.6 EEPROM access and I2C interface
      1. 7.6.1 EEPROM Access
        1. 7.6.1.1 EEPROM Write
        2. 7.6.1.2 EEPROM Read
      2. 7.6.2 I2C Serial Interface
        1. 7.6.2.1 I2C Data Word
        2. 7.6.2.2 I2C Write Transaction
        3. 7.6.2.3 I2C Read Transaction
        4. 7.6.2.4 I2C Communication Protocol Packet Examples
        5. 7.6.2.5 I2C Clock Stretching
        6. 7.6.2.6 CRC Byte Calculation
    7. 7.7 EEPROM (Non-Volatile) Register Map
      1. 7.7.1 Algorithm_Configuration Registers
      2. 7.7.2 Fault_Configuration Registers
      3. 7.7.3 Hardware_Configuration Registers
      4. 7.7.4 Internal_Algorithm_Configuration Registers
    8. 7.8 RAM (Volatile) Register Map
      1. 7.8.1 Fault_Status Registers
      2. 7.8.2 System_Status Registers
      3. 7.8.3 Device_Control Registers
      4. 7.8.4 Algorithm_Control Registers
      5. 7.8.5 Algorithm_Variables Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Application Curves
        1. 8.2.1.1 Motor startup
        2. 8.2.1.2 MPET
        3. 8.2.1.3 Dead time compensation
        4. 8.2.1.4 Auto handoff
        5. 8.2.1.5 Anti voltage surge (AVS)
        6. 8.2.1.6 Real time variable tracking using DACOUT
  10. Power Supply Recommendations
    1. 9.1 Bulk Capacitance
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
      1. 10.3.1 Power Dissipation
  12. 11Device and Documentation Support
    1. 11.1 Support Resources
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Electrical Characteristics

at TJ = –40°C to +150°C, VVM = 4.5 to 35 V (unless otherwise noted). Typical limits apply for TA = 25°C, VVM = 24 V
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
POWER SUPPLIES
IVMQ VM sleep mode current VVM > 6 V, VSPEED = 0, TA = 25 °C 3 5 µA
VSPEED = 0, TA = 125 °C 3.5 7 µA
IVMS VM standby mode current VVM > 6 V, VSPEED > VEN_SB, DRVOFF = High, TA = 25 °C, LBK = 47 µH, CBK = 22 µF  8 15 mA
VVM > 6 V, VSPEED > VEN_SB, DRVOFF = High, RBK = 22 Ω, CBK = 22 µF 25 28 mA
VVM > 6 V, VSPEED > VEN_SB, DRVOFF = High, LBK = 47 µH, CBK = 22 µF  8 15 mA
VVM > 6 V, VSPEED > VEN_SB, DRVOFF = High, RBK = 22 Ω, CBK = 22 µF 25 28 mA
IVM VM operating mode current VVM > 6 V, VSPEED > VEX_SL, PWM_FREQ_OUT = 0011b (25 kHz), TJ = 25 °C, LBK = 47 µH, CBK = 22 µF, No Motor Connected 11 18 mA
VVM > 6 V, VSPEED > VEX_SL, PWM_FREQ_OUT = 0011b (25 kHz), TJ = 25 °C, RBK = 22 Ω, CBK = 22 µF, No Motor Connected 27 32 mA
VVM > 6 V, VSPEED > VEX_SL, PWM_FREQ_OUT = 0011b (25 kHz), LBK = 47 µH, CBK = 22 µF, No Motor Connected 11 17 mA
VVM > 6 V, VSPEED > VEX_SL, PWM_FREQ_OUT = 0011b (25 kHz), RBK = 22 Ω, CBK = 22 µF, No Motor Connected 28 33 mA
VAVDD Analog regulator voltage 0 mA ≤ IAVDD ≤ 20 mA 3.125 3.3 3.465 V
IAVDD External analog regulator load 20 mA
VDVDD Digital regulator voltage 1.4 1.55 1.65 V
VVCP Charge pump regulator voltage VCP with respect to VM 4.0 4.7 5.5 V
BUCK REGULATOR
VBK Buck regulator average voltage
(LBK = 47 µH, CBK = 22 µF)
 
VVM > 6 V, 0 mA ≤ IBK ≤ 170 mA, BUCK_SEL = 00b 3.1 3.3 3.5 V
VVM > 6 V, 0 mA ≤ IBK ≤ 170 mA, BUCK_SEL = 01b 4.6 5.0 5.4 V
VVM > 6 V, 0 mA ≤ IBK ≤ 170 mA, BUCK_SEL = 10b 3.7 4.0 4.3 V
VVM > 6.7 V, 0 mA ≤ IBK ≤ 170 mA, BUCK_SEL = 11b 5.2 5.7 5.8 V
VVM < 6.0 V (BUCK_SEL = 00b, 01b, 10b, 11b), 0 mA ≤ IBK ≤ 170 mA VVM–IBK*(RLBK+2) 1 V
VBK Buck regulator average voltage
(LBK = 22 µH, CBK = 22 µF)
 
VVM > 6 V, 0 mA ≤ IBK ≤ 20 mA, BUCK_SEL = 00b 3.1 3.3 3.5 V
VVM > 6 V, 0 mA ≤ IBK ≤ 20 mA, BUCK_SEL = 01b 4.6 5.0 5.4 V
VVM > 6 V, 0 mA ≤ IBK ≤ 20 mA, BUCK_SEL = 10b 3.7 4.0 4.3 V
VVM > 6.7 V, 0 mA ≤ IBK ≤ 20 mA, BUCK_SEL = 11b 5.2 5.7 5.8 V
VVM < 6.0 V (BUCK_SEL = 00b, 01b, 10b, 11b), 0 mA ≤ IBK ≤ 20 mA VVM–IBK*(RLBK+2)1 V
VBK Buck regulator average voltage
(RBK = 22 Ω, CBK = 22 µF)
 
VVM > 6 V, 0 mA ≤ IBK ≤ 10 mA, BUCK_SEL = 00b 3.1 3.3 3.5 V
VVM > 6 V, 0 mA ≤ IBK ≤ 10 mA, BUCK_SEL = 01b 4.6 5.0 5.4 V
VVM > 6 V, 0 mA ≤ IBK ≤ 10 mA, BUCK_SEL = 10b 3.7 4.0 4.3 V
VVM > 6.7 V, 0 mA ≤ IBK ≤ 10 mA, BUCK_SEL = 11b 5.2 5.7 5.8 V
VVM < 6.0 V (BUCK_SEL = 00b, 01b, 10b, 11b), 0 mA ≤ IBK ≤ 10 mA VVM–IBK*(RLBK+2) (1) V
VBK_RIP Buck regulator ripple voltage VVM > 6 V, 0 mA ≤ IBK ≤ 170 mA, Buck regulator with inductor, LBK = 47 µH, CBK = 22 µF –100 100 mV
VVM > 6 V, 0 mA ≤ IBK ≤ 20 mA, Buck regulator with inductor, LBK = 22 µH, CBK = 22 µF –100 100 mV
VVM > 6 V, 0 mA ≤ IBK ≤ 10 mA, Buck regulator with resistor, RBK = 22 Ω, CBK = 22 µF –100 100 mV
IBK External buck regulator load LBK = 47 µH, CBK = 22 µF, BUCK_PS_DIS = 1b 170 mA
LBK = 47 µH, CBK = 22 µF, BUCK_PS_DIS = 0b 170 – IAVDD mA
LBK = 22 µH, CBK = 22 µF, BUCK_PS_DIS = 1b 20 mA
LBK = 22 µH, CBK = 22 µF, BUCK_PS_DIS = 0b 20 – IAVDD mA
RBK = 22 Ω, CBK = 22 µF, BUCK_PS_DIS = 1b 10 mA
RBK = 22 Ω, CBK = 22 µF, BUCK_PS_DIS = 0b 10 – IAVDD mA
fSW_BK Buck regulator switching frequency Regulation Mode 20 535 kHz
Linear Mode 20 535 kHz
VBK_UV Buck regulator undervoltage lockout
 
VBK rising, BUCK_SEL = 00b 2.7 2.8 2.95 V
VBK falling, BUCK_SEL = 00b 2.5 2.6 2.7 V
VBK rising, BUCK_SEL = 01b 4.3 4.4 4.55 V
VBK falling, BUCK_SEL = 01b 4.1 4.2 4.38 V
VBK rising, BUCK_SEL = 10b 2.7 2.8 2.95 V
VBK falling, BUCK_SEL = 10b 2.5 2.6 2.7 V
VBK rising, BUCK_SEL = 11b 4.3 4.4 4.55 V
VBK falling, BUCK_SEL = 11b 4.1 4.2 4.38 V
VBK_UV_HYS Buck regulator undervoltage lockout hysteresis Rising to falling threshold, BUCK_SEL = 00b 90 200 400 mV
Rising to falling threshold, BUCK_SEL = 01b 90 200 400 mV
Rising to falling threshold, BUCK_SEL = 10b 90 200 400 mV
Rising to falling threshold, BUCK_SEL =11b 90 200 400 mV
IBK_CL Buck regulator current limit threshold
 
BUCK_CL = 0b 360 600 910 mA
BUCK_CL = 1b 80 150 260 mA
IBK_OCP Buck regulator overcurrent protection trip point 2 3 4 A
tBK_RETRY Overcurrent protection retry time 0.7 1 1.3 ms
DRIVER OUTPUTS
RDS(ON) Total MOSFET on resistance (High-side + Low-side) VVM > 6 V, IOUT = 1 A, TA = 25°C 95 125
VVM < 6 V, IOUT = 1 A, TA = 25°C 105 130
VVM > 6 V, IOUT = 1 A, TJ = 150 °C 140 185
VVM < 6 V, IOUT = 1 A, TJ = 150 °C 145 190
SR Phase pin slew rate switching low to high (Rising from 20 % to 80 %) VVM = 24 V, SLEW_RATE = 10b 80 125 185 V/µs
VVM = 24 V, SLEW_RATE = 11b 130 200 280 V/µs
SR Phase pin slew rate switching high to low (Falling from 80 % to 20 % VVM = 24 V, SLEW_RATE = 10b 80 125 185 V/µs
VVM = 24 V, SLEW_RATE = 11b 110 200 280 V/µs
tDEAD Output dead time (high to low / low to high) VVM = 24 V, SLEW_RATE = 10b 650 1000 ns
VVM = 24 V, SLEW_RATE = 11b 500 750 ns
SPEED INPUT - PWM MODE
ƒPWM PWM input frequency 0.01 100 kHz
ResPWM PWM input resolution 0.01 kHz ≤ fPWM < 0.35 kHz 11 12 13 bits
0.35 kHz ≤ fPWM < 2 kHz 12 13 14 bits
2 kHz ≤ fPWM < 3.5 kHz 11 11.5 12 bits
3.5 kHz ≤ fPWM < 7 kHz 13 13.5 14 bits
7 kHz ≤ fPWM < 14 kHz 12 12.5 13 bits
14 kHz ≤ fPWM < 29.3 kHz  11 11.5 12 bits
29.3 kHz ≤ fPWM < 60 kHz 10 10.5 11 bits
60 kHz ≤ fPWM ≤ 100 kHz 8 9 10 bits
SPEED INPUT - ANALOG MODE
VANA_FS Analog full-speed voltage 2.95 3 3.05 V
VANA_RES Analog voltage resolution 732 μV
SPEED INPUT - FREQUENCY MODE
ƒPWM_FREQ PWM input frequency range  Duty cycle = 50% 3 32767 Hz
SLEEP MODE
VEN_SL Analog voltage to enter sleep state SPEED_MODE = 00b (analog mode) 40 mV
VEX_SL Analog voltage to exit sleep state SPEED_MODE = 00b (analog mode) 2.2 V
tDET_ANA Time needed to detect wake-up signal on SPEED pin  SPEED_MODE = 00b (analog mode)
VSPEED > VEX_SL
0.5 1 1.5 μs
tWAKE Wake-up time from sleep state VSPEED > VEX_SL to DVDD voltage available, SPEED_MODE = 01b (PWM mode) 3 5 ms
tEX_SL_DR_ANA Time taken to drive motor after wake-up from sleep state SPEED_MODE = 00b (analog mode), DVDD voltage available to first output PWM pulse, ISD detection disabled 20 ms
tDET_PWM Time needed to detect wake-up signal on SPEED pin  SPEED_MODE = 01b (PWM mode)
VSPEED > VIH
0.5 1 1.5 μs
tWAKE_PWM Wake-up time from sleep state VSPEED > VIH to DVDD voltage available, SPEED_MODE = 01b (PWM mode) 3 5 ms
tEX_SL_DR_PWM Time taken to drive motor after wake-up from sleep state SPEED_MODE = 01b (PWM mode), DVDD voltage available to first output PWM pulse, ISD detection disabled 20 ms
tDET_SL_ANA Time needed to detect sleep command SPEED_MODE = 00b (analog mode), 
VSPEED < VEN_SLSLEEP_ENTRY_TIME = 00b
0.035 0.05 0.065 ms
SPEED_MODE = 00b (analog mode), 
VSPEED < VEN_SLSLEEP_ENTRY_TIME = 01b
0.14 0.2 0.26 ms
SPEED_MODE = 00b (analog mode), 
VSPEED < VEN_SLSLEEP_ENTRY_TIME = 10b
14 20 26 ms
SPEED_MODE = 00b (analog mode), 
VSPEED < VEN_SLSLEEP_ENTRY_TIME = 11b
140 200 260 ms
tDET_SL_PWM Time needed to detect sleep command SPEED_MODE = 01b (PWM mode) or 11b (Frequency mode), 
VSPEED < VIL, SLEEP_ENTRY_TIME = 00b
0.035 0.05 0.065 ms
SPEED_MODE = 01b (PWM mode) or 11b (Frequency mode), 
VSPEED < VIL, SLEEP_ENTRY_TIME = 01b
0.14 0.2 0.26 ms
SPEED_MODE = 01b (PWM mode) or 11b (Frequency mode), 
VSPEED < VIL, SLEEP_ENTRY_TIME = 10b
14 20 26 ms
SPEED_MODE = 01b (PWM mode) or 11b (Frequency mode), 
VSPEED < VIL, SLEEP_ENTRY_TIME = 11b
140 200 260 ms
tEN_SL Time needed to stop driving motor after detecting sleep command VSPEED < VEN_SL (analog mode) or VSPEED < VIL (PWM mode or Frequency mode) or VSPEED < VIL and DIGITAL_SPEED_CTRL = 0b (I2C mode) 1 2 ms
STANDBY MODE
tEX_SB_DR_ANA Time taken to drive motor after exiting standby state SPEED_MODE = 00b (analog mode)
VSPEED > VEX_SB, ISD detection disabled
6 ms
tEX_SB_DR_PWM Time taken to drive motor after exiting standby state SPEED_MODE = 01b (PWM mode)
VSPEED > VIH, ISD detection disabled
6 ms
tDET_SB_ANA Time needed to detect standby command SPEED_MODE = 00b (analog mode)
VSPEED < VEN_SB
0.5 1 2 ms
tEN_SB_PWM Time needed to detect standby command SPEED_MODE = 01b (PWM mode)
VSPEED < VIL, SLEEP_ENTRY_TIME = 00b
0.035 0.05 0.065 ms
SPEED_MODE = 01b (PWM mode)
VSPEED < VIL, SLEEP_ENTRY_TIME = 01b
0.14 0.2 0.26 ms
SPEED_MODE = 01b (PWM mode)
VSPEED < VIL, SLEEP_ENTRY_TIME = 10b
14 20 26 ms
SPEED_MODE = 01b (PWM mode)
VSPEED < VIL, SLEEP_ENTRY_TIME = 11b
140 200 260 ms
tEN_SB_DIG Time needed to detect standby command SPEED_MODE = 10b (I2C mode), DIGITAL_SPEED_CTRL = 0b 1 2 ms
tEN_SB_FREQ Time needed to detect standby command SPEED_MODE = 11b (Frequency mode), VSPEED < VIL 4000 ms
tEN_SB Time needed to stop driving motor after detecting standby command VSPEED < VEN_SL (analog mode) or VSPEED < VIL (PWM or Frequency mode) or DIGITAL_SPEED_CTRL = 0b (I2C mode) 1 2 ms
LOGIC-LEVEL INPUTS (BRAKE, DIR, EXT_CLK, EXT_WD, SCL, SDA, SPEED)
VIL Input logic low voltage AVDD = 3 to 3.6 V 0.25*AVDD V
VIH Input logic high voltage AVDD = 3 to 3.6 V 0.65*AVDD V
VHYS Input hysteresis 50 500 800 mV
IIL Input logic low current AVDD = 3 to 3.6 V -0.15 0.15 µA
IIH Input logic high current AVDD  = 3 to 3.6 V -0.4 0.15 µA
RPD_SPEED Input pulldown resistance SPEED pin To GND 0.6 1 1.4
OPEN-DRAIN OUTPUTS (nFAULT, FG)
VOL Output logic low voltage IOD =-5 mA 0.4 V
IOZ Output logic high current VOD = 3.3 V 0 0.5 µA
I2C Serial Interface
VI2C_L LOW-level input voltage  -0.5 0.3*AVDD V
VI2C_H HIGH-level input voltage  0.7*AVDD 5.5 V
VI2C_HYS Hysterisis  0.05*AVDD V
VI2C_OL LOW-level output voltage open-drain at 2mA sink current  0 0.4 V
II2C_OL LOW-level output current VI2C_OL = 0.6V 6 mA
II2C_IL Input current on SDA and SCL -102 102 µA
Ci Capacitance for SDA and SCL 10 pF
tof Output fall time from VI2C_H(min) to VI2C_L(max) Standard Mode 2503 ns
Fast Mode 2503 ns
tSP Pulse width of spikes that must be suppressed by the input filter Fast Mode 0 504 ns
OSCILLATOR
fOSCREF External clock reference EXT_CLK_CONFIG = 000b 8 kHz
EXT_CLK_CONFIG = 001b 16 kHz
EXT_CLK_CONFIG = 010b 32 kHz
EXT_CLK_CONFIG = 011b 64 kHz
EXT_CLK_CONFIG = 100b 128 kHz
EXT_CLK_CONFIG = 101b 256 kHz
EXT_CLK_CONFIG = 110b 512 kHz
EXT_CLK_CONFIG = 111b 1024 kHz
EEPROM
EEProg Programming voltage 1.35 1.5 1.65 V
EERET Retention T= 25 ℃ 100 Years
T= -40 to 150 ℃ 10 Years
EEEND Endurance T= -40 to 150 ℃ 1000 Cycles
T= -40 to 85 ℃ 20000 Cycles
PROTECTION CIRCUITS
VUVLO Supply undervoltage lockout (UVLO) VM rising 4.3 4.4 4.5 V
VM falling 4.1 4.2 4.3 V
VUVLO_HYS Supply undervoltage lockout hysteresis Rising to falling threshold 110 200 350 mV
tUVLO Supply undervoltage deglitch time 3 5 7 µs
VOVP Supply overvoltage protection (OVP) Supply rising, OVP_EN = 1, OVP_SEL = 0 32.5 34 35 V
Supply falling, OVP_EN = 1, OVP_SEL = 0 31.8 33 34.3 V
Supply rising, OVP_EN = 1, OVP_SEL = 1 20 22 23 V
Supply falling, OVP_EN = 1, OVP_SEL = 1 19 21 22 V
VOVP_HYS Supply overvoltage protection (OVP) Rising to falling threshold, OVP_SEL = 1 0.9 1 1.1 V
Rising to falling threshold, OVP_SEL = 0 0.7 0.8 0.9 V
tOVP Supply overvoltage deglitch time 2.5 5 7 µs
VCPUV Charge pump undervoltage lockout (above VM) Supply rising 2.25 2.5 2.75 V
Supply falling 2.2 2.4 2.6 V
VCPUV_HYS Charge pump UVLO hysteresis Rising to falling threshold 65 100 150 mV
VAVDD_UV Analog regulator undervoltage lockout Supply rising 2.7 2.85 3 V
Supply falling 2.5 2.65 2.8 V
VAVDD_UV_HYS Analog regulator undervoltage lockout hysteresis Rising to falling threshold 180 200 240 mV
IOCP Overcurrent protection trip point OCP_LVL = 0b 9.5 16 22 A
OCP_LVL = 1b 15 24 28 A
tOCP Overcurrent protection deglitch time OCP_DEG = 00b 0.02 0.2 0.4 µs
OCP_DEG = 01b 0.2 0.6 1.2 µs
OCP_DEG = 10b 0.5 1.2 1.8 µs
OCP_DEG = 11b 0.9 1.6 2.5 µs
tRETRY Overcurrent protection retry time 425 500 575 ms
TOTW Thermal warning temperature Die temperature (TJ) 135 145 155 °C
TOTW_HYS Thermal warning hysteresis Die temperature (TJ) 15 20 25 °C
TTSD_BUCK Thermal shutdown temperature (Buck) Die temperature (TJ) 170 180 190 °C
TTSD_BUCK_HYS Thermal shutdown hysteresis (Buck) Die temperature (TJ) 15 20 25 °C
TTSD_FET Thermal shutdown temperature (FET) Die temperature (TJ) 165 175 185 °C
TTSD_FET_HYS Thermal shutdown hysteresis (FET) Die temperature (TJ) 20 25 30 °C
RLBK is resistance of inductor LBK
If AVDD is switched off, I/O pins must not obstruct the SDA and SCL lines.
The maximum tf for the SDA and SCL bus lines (300 ns) is longer than the specified maximum tof for the output stages (250 ns). This allows series protection resistors (Rs) to be connected between the SDA/SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.
Input filters on the SDA and SCL inputs suppress noise spikes of less than 50 ns