SLLSFQ7 November   2023 MCF8329A

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings Comm
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information 1pkg
    5. 6.5 Electrical Characteristics
    6. 6.6 Characteristics of the SDA and SCL bus for Standard and Fast mode
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Three Phase BLDC Gate Drivers
      2. 7.3.2  Gate Drive Architecture
        1. 7.3.2.1 Dead time and Cross Conduction Prevention
      3. 7.3.3  AVDD Linear Voltage Regulator
      4. 7.3.4  DVDD Voltage Regulator
        1. 7.3.4.1 AVDD Powered VREG
        2. 7.3.4.2 External Supply for VREG
        3. 7.3.4.3 External MOSFET for VREG Supply
      5. 7.3.5  Low-Side Current Sense Amplifier
      6. 7.3.6  Device Interface Modes
        1. 7.3.6.1 Interface - Control and Monitoring
        2. 7.3.6.2 I2C Interface
      7. 7.3.7  Motor Control Input Options
        1. 7.3.7.1 Analog-Mode Motor Control
        2. 7.3.7.2 PWM-Mode Motor Control
        3. 7.3.7.3 Frequency-Mode Motor Control
        4. 7.3.7.4 I2C based Motor Control
        5. 7.3.7.5 Input Control Reference Profiles
          1. 7.3.7.5.1 Linear Control Profiles
          2. 7.3.7.5.2 Staircase Control Profiles
          3. 7.3.7.5.3 Forward-Reverse Profiles
        6. 7.3.7.6 Control Input Transfer Function without Profiler
      8. 7.3.8  Bootstrap Capacitor Initial Charging
      9. 7.3.9  Starting the Motor Under Different Initial Conditions
        1. 7.3.9.1 Case 1 – Motor is Stationary
        2. 7.3.9.2 Case 2 – Motor is Spinning in the Forward Direction
        3. 7.3.9.3 Case 3 – Motor is Spinning in the Reverse Direction
      10. 7.3.10 Motor Start Sequence (MSS)
        1. 7.3.10.1 Initial Speed Detect (ISD)
        2. 7.3.10.2 Motor Resynchronization
        3. 7.3.10.3 Reverse Drive
          1. 7.3.10.3.1 Reverse Drive Tuning
        4. 7.3.10.4 Motor Start-up
          1. 7.3.10.4.1 Align
          2. 7.3.10.4.2 Double Align
          3. 7.3.10.4.3 Initial Position Detection (IPD)
            1. 7.3.10.4.3.1 IPD Operation
            2. 7.3.10.4.3.2 IPD Release
            3. 7.3.10.4.3.3 IPD Advance Angle
          4. 7.3.10.4.4 Slow First Cycle Startup
          5. 7.3.10.4.5 Open loop
          6. 7.3.10.4.6 Transition from Open to Closed Loop
      11. 7.3.11 Closed Loop Operation
        1. 7.3.11.1 Closed loop accelerate
        2. 7.3.11.2 Speed PI Control
        3. 7.3.11.3 Current PI Control
        4. 7.3.11.4 Power Loop
        5. 7.3.11.5 Modulation Index Control
      12. 7.3.12 Maximum Torque Per Ampere (MTPA) Control
      13. 7.3.13 Flux Weakening Control
      14. 7.3.14 Motor Parameters
        1. 7.3.14.1 Motor Resistance
        2. 7.3.14.2 Motor Inductance
        3. 7.3.14.3 Motor Back-EMF constant
      15. 7.3.15 Motor Parameter Extraction Tool (MPET)
      16. 7.3.16 Anti-Voltage Surge (AVS)
      17. 7.3.17 Output PWM Switching Frequency
      18. 7.3.18 Active Braking
      19. 7.3.19 Dead Time Compensation
      20. 7.3.20 Voltage Sense Scaling
      21. 7.3.21 Motor Stop Options
        1. 7.3.21.1 Coast (Hi-Z) Mode
        2. 7.3.21.2 Recirculation Mode
        3. 7.3.21.3 Low-Side Braking
        4. 7.3.21.4 Active Spin-Down
      22. 7.3.22 FG Configuration
        1. 7.3.22.1 FG Output Frequency
        2. 7.3.22.2 FG in Open-Loop
        3. 7.3.22.3 FG During Motor Stop
        4. 7.3.22.4 FG Behaviour During Fault
      23. 7.3.23 DC Bus Current Limit
      24. 7.3.24 Protections
        1. 7.3.24.1  PVDD Supply Undervoltage Lockout (PVDD_UV)
        2. 7.3.24.2  AVDD Power on Reset (AVDD_POR)
        3. 7.3.24.3  GVDD Undervoltage Lockout (GVDD_UV)
        4. 7.3.24.4  BST Undervoltage Lockout (BST_UV)
        5. 7.3.24.5  MOSFET VDS Overcurrent Protection (VDS_OCP)
        6. 7.3.24.6  VSENSE Overcurrent Protection (SEN_OCP)
        7. 7.3.24.7  Thermal Shutdown (OTSD)
        8. 7.3.24.8  Hardware Lock Detection Current Limit (HW_LOCK_ILIMIT)
          1. 7.3.24.8.1 HW_LOCK_ILIMIT Latched Shutdown (HW_LOCK_ILIMIT_MODE = 00xxb)
          2. 7.3.24.8.2 HW_LOCK_ILIMIT Automatic recovery (HW_LOCK_ILIMIT_MODE = 01xxb)
          3. 7.3.24.8.3 HW_LOCK_ILIMIT Report Only (HW_LOCK_ILIMIT_MODE = 1000b)
          4. 7.3.24.8.4 HW_LOCK_ILIMIT Disabled (HW_LOCK_ILIMIT_MODE= 1001b to 1111b)
        9. 7.3.24.9  Lock Detection Current Limit (LOCK_ILIMIT)
          1. 7.3.24.9.1 LOCK_ILIMIT Latched Shutdown (LOCK_ILIMIT_MODE = 00xxb)
          2. 7.3.24.9.2 LOCK_ILIMIT Automatic Recovery (LOCK_ILIMIT_MODE = 01xxb)
          3. 7.3.24.9.3 LOCK_ILIMIT Report Only (LOCK_ILIMIT_MODE = 1000b)
          4. 7.3.24.9.4 LOCK_ILIMIT Disabled (LOCK_ILIMIT_MODE = 1xx1b)
        10. 7.3.24.10 Motor Lock (MTR_LCK)
          1. 7.3.24.10.1 MTR_LCK Latched Shutdown (MTR_LCK_MODE = 00xxb)
          2. 7.3.24.10.2 MTR_LCK Automatic Recovery (MTR_LCK_MODE= 01xxb)
          3. 7.3.24.10.3 MTR_LCK Report Only (MTR_LCK_MODE = 1000b)
          4. 7.3.24.10.4 MTR_LCK Disabled (MTR_LCK_MODE = 1xx1b)
        11. 7.3.24.11 Motor Lock Detection
          1. 7.3.24.11.1 Lock 1: Abnormal Speed (ABN_SPEED)
          2. 7.3.24.11.2 Lock 2: Abnormal BEMF (ABN_BEMF)
          3. 7.3.24.11.3 Lock3: No-Motor Fault (NO_MTR)
        12. 7.3.24.12 MPET Faults
        13. 7.3.24.13 IPD Faults
    4. 7.4 Device Functional Modes
      1. 7.4.1 Functional Modes
        1. 7.4.1.1 Sleep Mode
        2. 7.4.1.2 Standby Mode
        3. 7.4.1.3 Fault Reset (CLR_FLT)
    5. 7.5 External Interface
      1. 7.5.1 DRVOFF - Gate Driver Shutdown Functionality
      2. 7.5.2 DAC outputs
      3. 7.5.3 Current Sense Amplifier Output
      4. 7.5.4 Oscillator Source
        1. 7.5.4.1 External Clock Source
    6. 7.6 EEPROM access and I2C interface
      1. 7.6.1 EEPROM Access
        1. 7.6.1.1 EEPROM Write
        2. 7.6.1.2 EEPROM Read
      2. 7.6.2 I2C Serial Interface
        1. 7.6.2.1 I2C Data Word
        2. 7.6.2.2 I2C Write Operation
        3. 7.6.2.3 I2C Read Operation
        4. 7.6.2.4 Examples of I2C Communication Protocol Packets
        5. 7.6.2.5 Internal Buffers
        6. 7.6.2.6 CRC Byte Calculation
    7. 7.7 EEPROM (Non-Volatile) Register Map
      1. 7.7.1 Algorithm_Configuration Registers
      2. 7.7.2 Internal_Algorithm_Configuration Registers
      3. 7.7.3 Hardware_Configuration Registers
      4. 7.7.4 Fault_Configuration Registers
    8. 7.8 RAM (Volatile) Register Map
      1. 7.8.1 Fault_Status Registers
      2. 7.8.2 Algorithm_Control Registers
      3. 7.8.3 System_Status Registers
      4. 7.8.4 Device_Control Registers
      5. 7.8.5 Algorithm_Variables Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1.      Detailed Design Procedure
      2.      Bootstrap Capacitor and GVDD Capacitor Selection
      3. 8.2.1 Selection of External MOSFET for VREG Power Supply
      4.      Gate Drive Current
      5.      Gate Resistor Selection
      6.      System Considerations in High Power Designs
      7.      Capacitor Voltage Ratings
      8.      External Power Stage Components
      9. 8.2.2 Application curves
        1. 8.2.2.1 Motor startup
        2.       High speed (1.8 kHz) operation
        3.       Active Braking for faster deceleration
        4. 8.2.2.2 Dead Time compensation
  10. Power Supply Recommendations
    1. 9.1 Bulk Capacitance
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
      1. 10.3.1 Power Dissipation
  12. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Support Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

Bypass the PVDD pin to the GND (PGND) pin using a low-ESR ceramic bypass capacitor with a recommended value of 0.1 µF. Place this capacitor as close to the PVDD pin as possible with a thick trace or ground plane connected to the PGND pin. Additionally, bypass the PVDD pin using a bulk capacitor rated for PVDD. This component can be electrolytic. This capacitance must be at least 10 µF.

Additional bulk capacitance is required to bypass the high current path on the external MOSFETs. This bulk capacitance should be placed such that it minimizes the length of any high current paths through the external MOSFETs. The connecting metal traces should be as wide as possible, with numerous vias connecting PCB layers. These practices minimize inductance and let the bulk capacitor deliver high current.

Place a low-ESR ceramic capacitor between the CPL and CPH pins. This capacitor should be 470 nF, rated for PVDD, and be of type X5R or X7R.

The bootstrap capacitors (BSTx-SHx) should be placed closely to device pins to minimize loop inductance for the gate drive paths.

Bypass the AVDD pin to the AGND pin with a 1-µF low-ESR ceramic capacitor rated for 6.3 V and of type X5R or X7R. Place this capacitor as close to the pin as possible and minimize the path from the capacitor to the AGND pin.

Bypass the DVDD pin to the GND pin with a 1-µF low-ESR ceramic capacitor rated for ≥ 4 V and of type X5R or X7R. Place this capacitor as close to the pin as possible and minimize the path from the capacitor to the GND pin.

Bypass the VREG pin with an adequate low-ESR ceramic capacitor rated of type X5R or X7R.

Minimize the loop length for the high-side and low-side gate drivers. The high-side loop is from the GHx pin of the device to the high-side power MOSFET gate, then follows the high-side MOSFET source back to the SHx pin. The low-side loop is from the GLx pin of the device to the low-side power MOSFET gate, then follows the low-side MOSFET source back to the PGND pin.

When designing higher power systems, physics in the PCB layout can cause parasitic inductance, capacitance, and impedance that deter the performance of the system. Understanding the parasitic that are present in a higher power motor drive system can help designers mitigate their effects through good PCB layout. For more information, visit the System Design Considerations for High-Power Motor Driver Applications and Best Practices for Board Layout of Motor Drivers application notes.

Gate drive traces (BSTx, GHx, SHx, GLx, LSS) should be at least 15-20mil wide and as short as possible to the MOSFET gates to minimize parasitic inductance and impedance. This helps supply large gate drive currents, turn MOSFETs on efficiently, and improves VGS and VDS monitoring. Ensure that the shunt resistor selected to monitor the low-side current from LSS to GND, is wide to minimize inductance introduced at the low-side source LSS.

Ensure grounds are connected through net-ties or wide resistors to reduce voltage offsets and maintain gate driver performance. The device thermal pad should be soldered to the PCB top-layer ground plane. Multiple vias should be used to connect to a large bottom-layer ground plane. The use of large metal planes and multiple vias helps dissipate the heat that is generated in the device. To improve thermal performance, maximize the ground area that is connected to the thermal pad ground across all possible layers of the PCB. Using thick copper pours can lower the junction-to-air thermal resistance and improve thermal dissipation from the die surface.