SLVSH86A December   2023  – June 2024 MCT8314Z

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SPI Timing Requirements
    7. 6.7 SPI Secondary Device Mode Timings
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Output Stage
      2. 7.3.2  PWM Control Mode (1x PWM Mode)
        1. 7.3.2.1 Analog Hall Input Configuration
        2. 7.3.2.2 Digital Hall Input Configuration
        3. 7.3.2.3 Asynchronous Modulation
        4. 7.3.2.4 Synchronous Modulation
        5. 7.3.2.5 Motor Operation
      3. 7.3.3  Device Interface Modes
        1. 7.3.3.1 Serial Peripheral Interface (SPI)
        2. 7.3.3.2 Hardware Interface
      4. 7.3.4  AVDD Linear Voltage Regulator
      5. 7.3.5  Charge Pump
      6. 7.3.6  Slew Rate
      7. 7.3.7  Cross Conduction (Dead Time)
      8. 7.3.8  Propagation Delay
      9. 7.3.9  Pin Diagrams
        1. 7.3.9.1 Logic Level Input Pin (Internal Pulldown)
        2. 7.3.9.2 Logic Level Input Pin (Internal Pullup)
        3. 7.3.9.3 Open Drain Pin
        4. 7.3.9.4 Push Pull Pin
        5. 7.3.9.5 Seven Level Input Pin
      10. 7.3.10 Automatic Synchronous Rectification Mode (ASR Mode)
      11. 7.3.11 Cycle-by-Cycle Current Limit
        1. 7.3.11.1 Cycle by Cycle Current Limit with 100% Duty Cycle Input
      12. 7.3.12 Hall Comparators (Analog Hall Inputs)
      13. 7.3.13 Advance Angle
      14. 7.3.14 FG Signal
      15. 7.3.15 Protections
        1. 7.3.15.1 VM Supply Undervoltage Lockout (NPOR)
        2. 7.3.15.2 AVDD Undervoltage Lockout (AVDD_UV)
        3. 7.3.15.3 VCP Charge Pump Undervoltage Lockout (CPUV)
        4. 7.3.15.4 Overvoltage Protections (OVP)
        5. 7.3.15.5 Overcurrent Protection (OCP)
          1. 7.3.15.5.1 OCP Latched Shutdown (OCP_MODE = 00b or MCT8314ZH)
          2. 7.3.15.5.2 OCP Automatic Retry (OCP_MODE = 01b)
          3. 7.3.15.5.3 OCP Report Only (OCP_MODE = 10b)
          4. 7.3.15.5.4 OCP Disabled (OCP_MODE = 11b)
        6. 7.3.15.6 Motor Lock (MTR_LOCK)
          1. 7.3.15.6.1 MTR_LOCK Latched Shutdown (MTR_LOCK_MODE = 00b)
          2. 7.3.15.6.2 MTR_LOCK Automatic Retry (MTR_LOCK_MODE = 01b or MCT8314ZH)
          3. 7.3.15.6.3 MTR_LOCK Report Only (MTR_LOCK_MODE= 10b)
          4. 7.3.15.6.4 MTR_LOCK Disabled (MTR_LOCK_MODE = 11b)
        7. 7.3.15.7 Thermal Warning (OTW)
        8. 7.3.15.8 Thermal Shutdown (OTS)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Functional Modes
        1. 7.4.1.1 Sleep Mode
        2. 7.4.1.2 Operating Mode
        3. 7.4.1.3 Fault Reset (CLR_FLT or nSLEEP Reset Pulse)
    5. 7.5 SPI Communication
      1. 7.5.1 Programming
        1. 7.5.1.1 SPI Format
  9. Register Map
    1. 8.1 STATUS Registers
    2. 8.2 CONTROL Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Hall Sensor Configuration and Connection
      1. 9.2.1 Typical Configuration
      2. 9.2.2 Open Drain Configuration
      3. 9.2.3 Series Configuration
      4. 9.2.4 Parallel Configuration
    3. 9.3 Typical Applications
      1. 9.3.1 Three-Phase Brushless-DC Motor Control With Current Limit
        1. 9.3.1.1 Detailed Design Procedure
          1. 9.3.1.1.1 Motor Voltage
          2. 9.3.1.1.2 Using Automatic Synchronous Rectification Mode (ASR Mode)
          3. 9.3.1.1.3 Power Dissipation and Junction Temperature Losses
        2. 9.3.1.2 Application Curves
    4. 9.4 Power Supply Recommendations
      1. 9.4.1 Bulk Capacitance
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
      3. 9.5.3 Thermal Considerations
        1. 9.5.3.1 Power Dissipation
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Package Option Addendum
    2. 12.2 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

The bulk capacitor should be placed to minimize the distance of the high-current path through the motor driver device. The connecting metal trace widths should be as wide as possible, and numerous vias should be used when connecting PCB layers. These practices minimize inductance and allow the bulk capacitor to deliver high current.

Small-value capacitors such as the charge pump and AVDD capacitors should be ceramic and placed closely to device pins.

The high-current device outputs should use wide metal traces.

To reduce noise coupling and EMI interference from large transient currents into small-current signal paths, grounding should be partitioned between PGND and AGND. TI recommends connecting all non-power stage circuitry (including the thermal pad) to AGND to reduce parasitic effects and improve power dissipation from the device. Ensure grounds are connected through net-ties or wide resistors to reduce voltage offsets and maintain gate driver performance.

The device thermal pad should be soldered to the PCB top-layer ground plane. Multiple vias should be used to connect to a large bottom-layer ground plane. The use of large metal planes and multiple vias helps dissipate the I2× RDS(on) heat that is generated in the device.

To improve thermal performance, maximize the ground area that is connected to the thermal pad ground across all possible layers of the PCB. Using thick copper pours can lower the junction-to-air thermal resistance and improve thermal dissipation from the die surface.

Recommended Layout Example for VQFN Package shows a layout example for the MCT8314Z.