SLLSFS3 May   2024 MCT8316A-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings Auto
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Characteristics of the SDA and SCL bus for Standard and Fast mode
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Output Stage
      2. 6.3.2  Device Interface Modes
        1. 6.3.2.1 Interface - Control and Monitoring
        2. 6.3.2.2 I2C Interface
      3. 6.3.3  Step-Down Mixed-Mode Buck Regulator
        1. 6.3.3.1 Buck in Inductor Mode
        2. 6.3.3.2 Buck in Resistor mode
        3. 6.3.3.3 Buck Regulator with External LDO
        4. 6.3.3.4 AVDD Power Sequencing from Buck Regulator
        5. 6.3.3.5 Mixed Mode Buck Operation and Control
        6. 6.3.3.6 Buck Undervoltage Protection
        7. 6.3.3.7 Buck Overcurrent Protection
      4. 6.3.4  AVDD Linear Voltage Regulator
      5. 6.3.5  Charge Pump
      6. 6.3.6  Slew Rate Control
      7. 6.3.7  Cross Conduction (Dead Time)
      8. 6.3.8  SPEED Control
        1. 6.3.8.1 Analog-Mode Speed Control
        2. 6.3.8.2 PWM-Mode Speed Control
        3. 6.3.8.3 I2C based Speed Control
        4. 6.3.8.4 Frequency-Mode Speed Control
      9. 6.3.9  Starting the Motor Under Different Initial Conditions
        1. 6.3.9.1 Case 1 – Motor is Stationary
        2. 6.3.9.2 Case 2 – Motor is Spinning in the Forward Direction
        3. 6.3.9.3 Case 3 – Motor is Spinning in the Reverse Direction
      10. 6.3.10 Motor Start Sequence (MSS)
        1. 6.3.10.1 Initial Speed Detect (ISD)
        2. 6.3.10.2 Motor Resynchronization
        3. 6.3.10.3 Reverse Drive
        4. 6.3.10.4 Motor Start-up
          1. 6.3.10.4.1 Align
          2. 6.3.10.4.2 Double Align
          3. 6.3.10.4.3 Initial Position Detection (IPD)
            1. 6.3.10.4.3.1 IPD Operation
            2. 6.3.10.4.3.2 IPD Release Mode
            3. 6.3.10.4.3.3 IPD Advance Angle
          4. 6.3.10.4.4 Slow First Cycle Startup
          5. 6.3.10.4.5 Open loop
          6. 6.3.10.4.6 Transition from Open to Closed Loop
      11. 6.3.11 Closed Loop Operation
        1. 6.3.11.1 120o Commutation
          1. 6.3.11.1.1 High-Side Modulation
          2. 6.3.11.1.2 Low-Side Modulation
          3. 6.3.11.1.3 Mixed Modulation
        2. 6.3.11.2 Variable Commutation
        3. 6.3.11.3 Lead Angle Control
        4. 6.3.11.4 Closed loop accelerate
      12. 6.3.12 Speed Loop
      13. 6.3.13 Input Power Regulation
      14. 6.3.14 Anti-Voltage Surge (AVS)
      15. 6.3.15 Output PWM Switching Frequency
      16. 6.3.16 Fast Start-up (< 50 ms)
        1. 6.3.16.1 BEMF Threshold
        2. 6.3.16.2 Dynamic Degauss
      17. 6.3.17 Fast Deceleration
      18. 6.3.18 Active Demagnetization
        1. 6.3.18.1 Active Demagnetization in action
      19. 6.3.19 Motor Stop Options
        1. 6.3.19.1 Coast (Hi-Z) Mode
        2. 6.3.19.2 Recirculation Mode
        3. 6.3.19.3 Low-Side Braking
        4. 6.3.19.4 High-Side Braking
        5. 6.3.19.5 Active Spin-Down
      20. 6.3.20 FG Configuration
        1. 6.3.20.1 FG Output Frequency
        2. 6.3.20.2 FG Open-Loop and Lock Behavior
      21. 6.3.21 Protections
        1. 6.3.21.1  VM Supply Undervoltage Lockout
        2. 6.3.21.2  AVDD Undervoltage Lockout (AVDD_UV)
        3. 6.3.21.3  BUCK Undervoltage Lockout (BUCK_UV)
        4. 6.3.21.4  VCP Charge Pump Undervoltage Lockout (CPUV)
        5. 6.3.21.5  Overvoltage Protection (OVP)
        6. 6.3.21.6  Overcurrent Protection (OCP)
          1. 6.3.21.6.1 OCP Latched Shutdown (OCP_MODE = 00b)
          2. 6.3.21.6.2 OCP Automatic Retry (OCP_MODE = 01b)
          3. 6.3.21.6.3 OCP Report Only (OCP_MODE = 10b)
          4. 6.3.21.6.4 OCP Disabled (OCP_MODE = 11b)
        7. 6.3.21.7  Buck Overcurrent Protection
        8. 6.3.21.8  Cycle-by-Cycle (CBC) Current Limit (CBC_ILIMIT)
          1. 6.3.21.8.1 CBC_ILIMIT Automatic Recovery next PWM Cycle (CBC_ILIMIT_MODE = 000xb)
          2. 6.3.21.8.2 CBC_ILIMIT Automatic Recovery Threshold Based (CBC_ILIMIT_MODE = 001xb)
          3. 6.3.21.8.3 CBC_ILIMIT Automatic Recovery after 'n' PWM Cycles (CBC_ILIMIT_MODE = 010xb)
          4. 6.3.21.8.4 CBC_ILIMIT Report Only (CBC_ILIMIT_MODE = 0110b)
          5. 6.3.21.8.5 CBC_ILIMIT Disabled (CBC_ILIMIT_MODE = 0111b or 1xxxb)
        9. 6.3.21.9  Lock Detection Current Limit (LOCK_ILIMIT)
          1. 6.3.21.9.1 LOCK_ILIMIT Latched Shutdown (LOCK_ILIMIT_MODE = 00xxb)
          2. 6.3.21.9.2 LOCK_ILIMIT Automatic Recovery (LOCK_ILIMIT_MODE = 01xxb)
          3. 6.3.21.9.3 LOCK_ILIMIT Report Only (LOCK_ILIMIT_MODE = 1000b)
          4. 6.3.21.9.4 LOCK_ILIMIT Disabled (LOCK_ILIMIT_MODE = 1xx1b)
        10. 6.3.21.10 Thermal Warning (OTW)
        11. 6.3.21.11 Thermal Shutdown (TSD)
        12. 6.3.21.12 Motor Lock (MTR_LCK)
          1. 6.3.21.12.1 MTR_LCK Latched Shutdown (MTR_LCK_MODE = 00xxb)
          2. 6.3.21.12.2 MTR_LCK Automatic Recovery (MTR_LCK_MODE= 01xxb)
          3. 6.3.21.12.3 MTR_LCK Report Only (MTR_LCK_MODE = 1000b)
          4. 6.3.21.12.4 MTR_LCK Disabled (MTR_LCK_MODE = 1xx1b)
        13. 6.3.21.13 Motor Lock Detection
          1. 6.3.21.13.1 Lock 1: Abnormal Speed (ABN_SPEED)
          2. 6.3.21.13.2 Lock 2: Loss of Sync (LOSS_OF_SYNC)
          3. 6.3.21.13.3 Lock3: No-Motor Fault (NO_MTR)
        14. 6.3.21.14 IPD Faults
    4. 6.4 Device Functional Modes
      1. 6.4.1 Functional Modes
        1. 6.4.1.1 Sleep Mode
        2. 6.4.1.2 Standby Mode
        3. 6.4.1.3 Fault Reset (CLR_FLT)
    5. 6.5 External Interface
      1. 6.5.1 DRVOFF Functionality
      2. 6.5.2 DAC outputs
      3. 6.5.3 SOX Output
      4. 6.5.4 Oscillator Source
        1. 6.5.4.1 External Clock Source
      5. 6.5.5 External Watchdog
    6. 6.6 EEPROM access and I2C interface
      1. 6.6.1 EEPROM Access
        1. 6.6.1.1 EEPROM Write
        2. 6.6.1.2 EEPROM Read
      2. 6.6.2 I2C Serial Interface
        1. 6.6.2.1 I2C Data Word
        2. 6.6.2.2 I2C Write Operation
        3. 6.6.2.3 I2C Read Operation
        4. 6.6.2.4 Examples of MCT8316A-Q1 I2C Communication Protocol Packets
        5. 6.6.2.5 Internal Buffers
        6. 6.6.2.6 CRC Byte Calculation
    7. 6.7 EEPROM (Non-Volatile) Register Map
      1. 6.7.1 Algorithm_Configuration Registers
      2. 6.7.2 Fault_Configuration Registers
      3. 6.7.3 Hardware_Configuration Registers
      4. 6.7.4 Gate_Driver_Configuration Registers
    8. 6.8 RAM (Volatile) Register Map
      1. 6.8.1 Fault_Status Registers
      2. 6.8.2 System_Status Registers
      3. 6.8.3 Algo_Control Registers
      4. 6.8.4 Device_Control Registers
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 Application Curves
        1. 7.2.1.1 Motor startup
        2. 7.2.1.2 120o and variable commutation
        3. 7.2.1.3 Faster startup time
        4. 7.2.1.4 Setting the BEMF threshold
        5. 7.2.1.5 Maximum speed
        6. 7.2.1.6 Faster deceleration
    3. 7.3 Power Supply Recommendations
      1. 7.3.1 Bulk Capacitance
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
      3. 7.4.3 Thermal Considerations
        1. 7.4.3.1 Power Dissipation
  9. Device and Documentation Support
    1. 8.1 Support Resources
    2. 8.2 Trademarks
    3. 8.3 Electrostatic Discharge Caution
    4. 8.4 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Characteristics of the SDA and SCL bus for Standard and Fast mode

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
Standard-mode
fSCL SCL clock frequency 0 100 kHz
tHD_STA Hold time (repeated) START condition After this period, the first clock pulse is generated 4 µs
tLOW LOW period of the SCL clock 4.7 µs
tHIGH HIGH period of the SCL clock 4 µs
tSU_STA Set-up time for a repeated START condition 4.7 µs
tHD_DAT Data hold time (2) I2C bus devices 0 (3) (4) µs
tSU_DAT Data set-up time 250 ns
tr Rise time for both SDA and SCL signals 1000 ns
tf Fall time of both SDA and SCL signals (3)(6)(7)(8) 300 ns
tSU_STO Set-up time for STOP condition 4 µs
tBUF Bus free time between STOP and START condition 4.7 µs
Cb Capacitive load for each bus line (9) 400 pF
tVD_DAT Data valid time (10) 3.45 (4) µs
tVD_ACK Data valid acknowledge time (11) 3.45 (4) µs
VnL Noise margin at the LOW level For each connected device (including hysteresis) 0.1*AVDD V
Vnh Noise margin at the HIGHlevel For each connected device (including hysteresis) 0.2*AVDD V
Fast-mode
fSCL SCL clock frequency 0 400 KHz
tHD_STA Hold time (repeated) START condition After this period, the first clock pulse is generated 0.6 µs
tLOW LOW period of the SCL clock 1.3 µs
tHIGH HIGH period of the SCL clock 0.6 µs
tSU_STA Set-up time for a repeated START condition 0.6 µs
tHD_DAT Data hold time (2) 0 (3) (4) µs
tSU_DAT Data set-up time 100 (5) ns
tr Rise time for both SDA and SCL signals 20 300 ns
tf Fall time of both SDA and SCL signals (3)(6)(7)(8) 20 x (AVDD/5.5V) 300 ns
tSU_STO Set-up time for STOP condition 0.6 µs
tBUF Bus free time between STOP and START condition 1.3 µs
Cb Capacitive load for each bus line (9) 400 pF
tVD_DAT Data valid time (10) 0.9 (4) µs
tVD_ACK Data valid acknowledge time (11) 0.9 (4) µs
VnL Noise margin at the LOW level For each connected device (including hysteresis) 0.1*AVDD V
Vnh Noise margin at the HIGHlevel For each connected device (including hysteresis) 0.2*AVDD V
tHD_DAT is the data hold time that is measured from the falling edge of SCL, applies to data in transmission and the acknowledge.
A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.
The maximum tHD_DAT could be 3.45 us and 0.9 µs for Standard-mode and Fast-mode, but must be less than the maximum of tVD_DAT or tVD_ACK by a transistion time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretched the SCL, the data must be valid by the set-up time before it releases the clock.
A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tSU_DAT 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period if the SCL signal, it must output the next data bit to the SDA line tr(max) + tSU_DAT = 1000 + 250 = 1250 ns (according to the standard-mode I2C-bus specification) before the SCL line is released. Also the acknowledge timing must meet this set-up time.
If mixed with HS-mode devices, faster fall times according to Table 10 are allowed.
The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.
In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used, designers should allow for this when considering bus timing.
The maximum bus capacitance allowable may vary from the value depending on the actual operating voltage and frequency of the application.
tVD_DAT = time for data signal from SCL LOW to SDA output (HIGH or LOW, depending on which one is worse).
tVD_ACK = time for acknowledgement signal from SCL LOW to SDA output (HIGH or LOW, dependging on which one is worse).