SLLSFQ3 January   2023 MCT8329A

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings Comm
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information 1pkg
    5. 6.5 Electrical Characteristics
    6. 6.6 Characteristics of the SDA and SCL bus for Standard and Fast mode
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Three Phase BLDC Gate Drivers
      2. 7.3.2  Gate Drive Architecture
        1. 7.3.2.1 Dead time and Cross Conduction Prevention
      3. 7.3.3  AVDD Linear Voltage Regulator
      4. 7.3.4  DVDD Voltage Regulator
        1. 7.3.4.1 AVDD Powered VREG
        2. 7.3.4.2 External Supply for VREG
        3. 7.3.4.3 External MOSFET for VREG Supply
      5. 7.3.5  Low-Side Current Sense Amplifier
      6. 7.3.6  Device Interface Modes
        1. 7.3.6.1 Interface - Control and Monitoring
        2. 7.3.6.2 I2C Interface
      7. 7.3.7  Motor Control Input Options
        1. 7.3.7.1 Analog-Mode Motor Control
        2. 7.3.7.2 PWM-Mode Motor Control
        3. 7.3.7.3 Frequency-Mode Motor Control
        4. 7.3.7.4 I2C based Motor Control
        5. 7.3.7.5 Input Control Signal Profiles
          1. 7.3.7.5.1 Linear Control Profiles
          2. 7.3.7.5.2 Staircase Control Profiles
          3. 7.3.7.5.3 Forward-Reverse Profiles
        6. 7.3.7.6 Control Input Transfer Function without Profiler
      8. 7.3.8  Starting the Motor Under Different Initial Conditions
        1. 7.3.8.1 Case 1 – Motor is Stationary
        2. 7.3.8.2 Case 2 – Motor is Spinning in the Forward Direction
        3. 7.3.8.3 Case 3 – Motor is Spinning in the Reverse Direction
      9. 7.3.9  Motor Start Sequence (MSS)
        1. 7.3.9.1 Initial Speed Detect (ISD)
        2. 7.3.9.2 Motor Resynchronization
        3. 7.3.9.3 Reverse Drive
        4. 7.3.9.4 Motor Start-up
          1. 7.3.9.4.1 Align
          2. 7.3.9.4.2 Double Align
          3. 7.3.9.4.3 Initial Position Detection (IPD)
            1. 7.3.9.4.3.1 IPD Operation
            2. 7.3.9.4.3.2 IPD Release
            3. 7.3.9.4.3.3 IPD Advance Angle
          4. 7.3.9.4.4 Slow First Cycle Startup
          5. 7.3.9.4.5 Open loop
          6. 7.3.9.4.6 Transition from Open to Closed Loop
      10. 7.3.10 Closed Loop Operation
        1. 7.3.10.1 120o Commutation
          1. 7.3.10.1.1 High-Side Modulation
          2. 7.3.10.1.2 Low-Side Modulation
          3. 7.3.10.1.3 Mixed Modulation
        2. 7.3.10.2 Variable Commutation
        3. 7.3.10.3 Lead Angle Control
        4. 7.3.10.4 Closed loop accelerate
      11. 7.3.11 Speed Loop
      12. 7.3.12 Power Loop
      13. 7.3.13 Anti-Voltage Surge (AVS)
      14. 7.3.14 Output PWM Switching Frequency
      15. 7.3.15 Fast Start-up (< 50 ms)
        1. 7.3.15.1 BEMF Threshold
        2. 7.3.15.2 Dynamic Degauss
      16. 7.3.16 Fast Deceleration
      17. 7.3.17 Dynamic Voltage Scaling
      18. 7.3.18 Motor Stop Options
        1. 7.3.18.1 Coast (Hi-Z) Mode
        2. 7.3.18.2 Recirculation Mode
        3. 7.3.18.3 Low-Side Braking
        4. 7.3.18.4 High-Side Braking
        5. 7.3.18.5 Active Spin-Down
      19. 7.3.19 FG Configuration
        1. 7.3.19.1 FG Output Frequency
        2. 7.3.19.2 FG in Open-Loop
        3. 7.3.19.3 FG During Motor Stop
        4. 7.3.19.4 FG Behaviour During Fault
      20. 7.3.20 Protections
        1. 7.3.20.1  PVDD Supply Undervoltage Lockout (PVDD_UV)
        2. 7.3.20.2  AVDD Power on Reset (AVDD_POR)
        3. 7.3.20.3  GVDD Undervoltage Lockout (GVDD_UV)
        4. 7.3.20.4  BST Undervoltage Lockout (BST_UV)
        5. 7.3.20.5  MOSFET VDS Overcurrent Protection (VDS_OCP)
        6. 7.3.20.6  VSENSE Overcurrent Protection (SEN_OCP)
        7. 7.3.20.7  Thermal Shutdown (OTSD)
        8. 7.3.20.8  Cycle-by-Cycle (CBC) Current Limit (CBC_ILIMIT)
          1. 7.3.20.8.1 CBC_ILIMIT Automatic Recovery next PWM Cycle (CBC_ILIMIT_MODE = 000xb)
          2. 7.3.20.8.2 CBC_ILIMIT Automatic Recovery Threshold Based (CBC_ILIMIT_MODE = 001xb)
          3. 7.3.20.8.3 CBC_ILIMIT Automatic Recovery after 'n' PWM Cycles (CBC_ILIMIT_MODE = 010xb)
          4. 7.3.20.8.4 CBC_ILIMIT Report Only (CBC_ILIMIT_MODE = 0110b)
          5. 7.3.20.8.5 CBC_ILIMIT Disabled (CBC_ILIMIT_MODE = 0111b or 1xxxb)
        9. 7.3.20.9  Lock Detection Current Limit (LOCK_ILIMIT)
          1. 7.3.20.9.1 LOCK_ILIMIT Latched Shutdown (LOCK_ILIMIT_MODE = 00xxb)
          2. 7.3.20.9.2 LOCK_ILIMIT Automatic Recovery (LOCK_ILIMIT_MODE = 01xxb)
          3. 7.3.20.9.3 LOCK_ILIMIT Report Only (LOCK_ILIMIT_MODE = 1000b)
          4. 7.3.20.9.4 LOCK_ILIMIT Disabled (LOCK_ILIMIT_MODE = 1xx1b)
        10. 7.3.20.10 Motor Lock (MTR_LCK)
          1. 7.3.20.10.1 MTR_LCK Latched Shutdown (MTR_LCK_MODE = 00xxb)
          2. 7.3.20.10.2 MTR_LCK Automatic Recovery (MTR_LCK_MODE= 01xxb)
          3. 7.3.20.10.3 MTR_LCK Report Only (MTR_LCK_MODE = 1000b)
          4. 7.3.20.10.4 MTR_LCK Disabled (MTR_LCK_MODE = 1xx1b)
        11. 7.3.20.11 Motor Lock Detection
          1. 7.3.20.11.1 Lock 1: Abnormal Speed (ABN_SPEED)
          2. 7.3.20.11.2 Lock 2: Loss of Sync (LOSS_OF_SYNC)
          3. 7.3.20.11.3 Lock3: No-Motor Fault (NO_MTR)
        12. 7.3.20.12 IPD Faults
    4. 7.4 Device Functional Modes
      1. 7.4.1 Functional Modes
        1. 7.4.1.1 Sleep Mode
        2. 7.4.1.2 Standby Mode
        3. 7.4.1.3 Fault Reset (CLR_FLT)
    5. 7.5 External Interface
      1. 7.5.1 DRVOFF - Gate Driver Shutdown Functionality
      2. 7.5.2 DAC outputs
      3. 7.5.3 Current Sense Amplifier Output
      4. 7.5.4 Oscillator Source
        1. 7.5.4.1 External Clock Source
    6. 7.6 EEPROM access and I2C interface
      1. 7.6.1 EEPROM Access
        1. 7.6.1.1 EEPROM Write
        2. 7.6.1.2 EEPROM Read
      2. 7.6.2 I2C Serial Interface
        1. 7.6.2.1 I2C Data Word
        2. 7.6.2.2 I2C Write Operation
        3. 7.6.2.3 I2C Read Operation
        4. 7.6.2.4 Examples of I2C Communication Protocol Packets
        5. 7.6.2.5 Internal Buffers
        6. 7.6.2.6 CRC Byte Calculation
    7. 7.7 EEPROM (Non-Volatile) Register Map
      1. 7.7.1 Algorithm_Configuration Registers
      2. 7.7.2 Fault_Configuration Registers
      3. 7.7.3 Hardware_Configuration Registers
      4. 7.7.4 Gate_Driver_Configuration Registers
    8. 7.8 RAM (Volatile) Register Map
      1. 7.8.1 Fault_Status Registers
      2. 7.8.2 System_Status Registers
      3. 7.8.3 Algo_Control Registers
      4. 7.8.4 Device_Control Registers
      5. 7.8.5 Algorithm_Variables Registers
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1.      Detailed Design Procedure
      2.      Bootstrap Capacitor and GVDD Capacitor Selection
      3. 8.2.1 Selection of External MOSFET for VREG Power Supply
      4.      Gate Drive Current
      5.      Gate Resistor Selection
      6.      System Considerations in High Power Designs
      7.      Capacitor Voltage Ratings
      8.      External Power Stage Components
      9. 8.2.2 Application curves
        1. 8.2.2.1 Motor startup
        2. 8.2.2.2 120o and variable commutation
        3. 8.2.2.3 Faster startup time
        4. 8.2.2.4 Setting the BEMF threshold
        5. 8.2.2.5 Maximum speed
        6. 8.2.2.6 Faster deceleration
  9. Power Supply Recommendations
    1. 9.1 Bulk Capacitance
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
      1. 10.3.1 Power Dissipation
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Support Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

IPD Faults

The MCT8329A uses 12-bit timers to estimate the time during the current ramp up and ramp down during IPD, when the motor start-up is configured as IPD (MTR_STARTUP is set to 10b). During IPD, the algorithm checks for a successful current ramp-up to IPD_CURR_THR, starting with an IPD clock of 10MHz; if unsuccessful (timer overflow before current reaches IPD_CURR_THR), IPD is repeated with lower frequency clocks of 1MHz, 100kHz, and 10kHz sequentially. If the IPD timer overflows (current does not reach IPD_CURR_THR) with all the four clock frequencies, then the IPD_T1_FAULT gets triggered. Similarly the algorithm checks for a successful current decay to zero during IPD current ramp down using all the mentioned IPD clock frequencies. If the IPD timer overflows (current does not ramp down to zero) in all the four attempts, then the IPD_T2_FAULT gets triggered.

IPD gives incorrect results if the next IPD pulse is commanded before the complete decay of current due to present IPD pulse. The MCT8329A can generate a fault called IPD_FREQ_FAULT during such a scenario . The IPD_FREQ_FAULT maybe triggered if the IPD frequency is too high for the IPD current limit or if the motor inductance is too high for the IPD frequency and IPD current limit.