SLAS541M June 2007 – March 2022 MSP430F2416 , MSP430F2417 , MSP430F2418 , MSP430F2419 , MSP430F2616 , MSP430F2617 , MSP430F2618 , MSP430F2619
PRODUCTION DATA
The following documents describe the MSP430F261x and MSP430F241x MCUs. Copies of these documents are available on the Internet at www.ti.com.
Receiving Notification of Document Updates
To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com (for example, MSP430F2619). In the upper right corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document.
Errata
MSP430F2619 Microcontroller Errata
Describes the known exceptions to the functional specifications.
MSP430F2618 Microcontroller Errata
Describes the known exceptions to the functional specifications.
MSP430F2617 Microcontroller Errata
Describes the known exceptions to the functional specifications.
MSP430F2616 Microcontroller Errata
Describes the known exceptions to the functional specifications.
MSP430F2419 Microcontroller Errata
Describes the known exceptions to the functional specifications.
MSP430F2418 Microcontroller Errata
Describes the known exceptions to the functional specifications.
MSP430F2417 Microcontroller Errata
Describes the known exceptions to the functional specifications.
MSP430F2416 Microcontroller Errata
Describes the known exceptions to the functional specifications.
User's Guides
MSP430F2xx, MSP430G2xx Family User's Guide
Detailed description of all modules and peripherals available in this device family.
MSP430 Programming With the JTAG Interface
This document describes the functions that are required to erase, program, and verify the memory module of the MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition, it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG interface, which is also referred to as Spy-Bi-Wire (SBW).
MSP430 Flash Device Bootloader (BSL) User's Guide
The MSP430 BSL lets users communicate with embedded memory in the MSP430 MCU during the prototyping phase, final production, and in service. Both the programmable memory (flash memory) and the data memory (RAM) can be modified as required.
MSP430 Hardware Tools User's Guide
This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the program development tool for the MSP430 ultra-low-power microcontroller. Both available interface types, the parallel port interface and the USB interface, are described.
Application Reports
MSP430 32-kHz Crystal Oscillators
Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout are given. The document also contains detailed information on the possible oscillator tests to ensure stable oscillator operation in mass production.
MSP430 System-Level ESD Considerations
System-level ESD has become increasingly demanding with silicon technology scaling towards lower voltages and the need for designing cost-effective and ultra-low-power components. This application report addresses three different ESD topics to help board designers and OEMs understand and design robust system-level designs.
Understanding MSP430 Flash Data Retention
The MSP430 family of microcontrollers, as part of its broad portfolio, offers both read-only memory (ROM)-based and flash-based devices. Understanding the MSP430 flash is extremely important for efficient, robust, and reliable system design. Data retention is one of the key aspects to flash reliability. In this application report, data retention for the MSP430 flash is discussed in detail and the effect of temperature is given primary importance.
Interfacing the 3-V MSP430 to 5-V Circuits
The interfacing of the 3-V MSP430x1xx and MSP430x4xx microcontroller families to circuits with a supply of 5 V or higher is shown. Input, output and I/O interfaces are given and explained. Worse-case design equations are provided, where necessary. Some simple power supplies generating both voltages are shown, too.
Efficient Multiplication and Division Using MSP430
Multiplication and division in the absence of a hardware multiplier require many instruction cycles, especially in C. This report discusses a method that does not need a hardware multiplier and can perform multiplication and division with only shift and add instructions. The method described in this application report is based on Horner's method.