SLASEC3A August 2016 – August 2016 MSP430F6459-HIREL
PRODUCTION DATA.
MIN | MAX | UNIT | |
---|---|---|---|
Voltage applied at VCC to VSS | –0.3 | 4.1 | V |
Voltage applied to any pin (excluding VCORE, VBUS, V18)(2) | –0.3 | VCC + 0.3 | V |
Diode current at any device pin | ±2 | mA | |
Maximum junction temperature, TJ | –40 | 105 | °C |
Storage temperature, Tstg(3) | –55 | 150 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±1000 | V |
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±250 |
MIN | NOM | MAX | UNIT | |||
---|---|---|---|---|---|---|
VCC | Supply voltage during program execution and flash programming (AVCC1 = DVCC1 = DVCC2 = DVCC3 = DVCC = VCC)(1)(2) | PMMCOREVx = 0 | 1.8 | 3.6 | V | |
PMMCOREVx = 0, 1 | 2 | 3.6 | ||||
PMMCOREVx = 0, 1, 2 | 2.2 | 3.6 | ||||
PMMCOREVx = 0, 1, 2, 3 | 2.4 | 3.6 | ||||
VSS | Supply voltage (AVSS1 = AVSS2 = AVSS3 = DVSS1 = DVSS2 = DVSS3 = VSS) | 0 | V | |||
VBAT,RTC | Backup-supply voltage with RTC operational | TJ = –40°C to 105°C | 1.7 | 3.6 | V | |
VBAT,MEM | Backup-supply voltage with backup memory retained | TJ = –40°C to 105°C | 1.2 | 3.6 | V | |
TJ | Operating junction temperature | T version | –40 | 105 | °C | |
CBAK | Capacitance at pin VBAK | 1 | 4.7 | 10 | nF | |
CVCORE | Capacitor at VCORE(3) | 470 | nF | |||
CDVCC / CVCORE | Capacitor ratio of DVCC to VCORE | 10 | ||||
fSYSTEM | Processor frequency (maximum MCLK frequency)(4)(5) (see Figure 5-1) | PMMCOREVx = 0, 1.8 V ≤ VCC ≤ 3.6 V (default condition) |
0 | 8 | MHz | |
PMMCOREVx = 1, 2 V ≤ VCC ≤ 3.6 V |
0 | 12 | ||||
PMMCOREVx = 2, 2.2 V ≤ VCC ≤ 3.6 V |
0 | 16 | ||||
PMMCOREVx = 3, 2.4 V ≤ VCC ≤ 3.6 V |
0 | 20 |
PARAMETER | EXECUTION MEMORY | VCC | PMMCOREVx | FREQUENCY (fDCO = fMCLK = fSMCLK) | UNIT | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 MHz | 8 MHz | 12 MHz | 20 MHz | |||||||||
TYP | MAX | TYP | MAX | TYP | MAX | TYP | MAX | |||||
IAM, Flash | Flash | 3 V | 0 | 0.36 | 0.45 | 2.4 | 2.7 | mA | ||||
1 | 0.41 | 2.7 | 4.0 | 4.4 | ||||||||
2 | 0.46 | 2.9 | 4.3 | |||||||||
3 | 0.51 | 3.1 | 4.5 | 7.4 | ||||||||
IAM, RAM | RAM | 3 V | 0 | 0.18 | 0.25 | 1.0 | 1.3 | mA | ||||
1 | 0.20 | 1.2 | 1.7 | 1.9 | ||||||||
2 | 0.22 | 1.3 | 2.0 | |||||||||
3 | 0.23 | 1.4 | 2.2 | 3.6 |
PARAMETER | VCC | PMMCOREVx | –40°C | 25°C | 60°C | 105°C | UNIT | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
TYP | MAX | TYP | MAX | TYP | MAX | TYP | MAX | |||||
ILPM0,1MHz | Low-power mode 0(3) (9) | 2.2 V | 0 | 69 | 73 | 95 | 79 | 101 | 135 | µA | ||
3 V | 3 | 79 | 83 | 120 | 87 | 116 | 155 | |||||
ILPM2 | Low-power mode 2(4) (9) | 2.2 V | 0 | 6.1 | 6.7 | 9.0 | 8.0 | 22 | 40 | µA | ||
3 V | 3 | 6.5 | 7.1 | 9.5 | 8.5 | 24 | 42 | |||||
ILPM3,XT1LF | Low-power mode 3, crystal mode(5) (9) | 2.2 V | 0 | 1.5 | 2.0 | 3.3 | 3.3 | 18 | 34 | µA | ||
1 | 1.7 | 2.2 | 3.6 | 8.5 | ||||||||
2 | 1.9 | 2.4 | 3.8 | 18.7 | ||||||||
3 V | 0 | 1.8 | 2.2 | 3.5 | 3.6 | 18.3 | 35 | |||||
1 | 1.9 | 2.4 | 3.8 | 18.7 | ||||||||
2 | 2.1 | 2.6 | 4.0 | 18.8 | ||||||||
3 | 2.1 | 2.6 | 4.2 | 4.0 | 19.4 | 37 | ||||||
ILPM3,VLO, WDT | Low-power mode 3, VLO mode, Watchdog enabled(6) (9) | 3 V | 0 | 1.0 | 1.3 | 2.7 | 2.7 | 17.2 | 34 | µA | ||
1 | 1.1 | 1.5 | 2.8 | 17.5 | ||||||||
2 | 1.1 | 1.6 | 2.9 | 17.6 | ||||||||
3 | 1.1 | 1.6 | 3.2 | 2.9 | 18.2 | 35 | ||||||
ILPM4 | Low-power mode 4(7) (9) | 3 V | 0 | 0.9 | 1.3 | 2.5 | 2.5 | 17.1 | 34 | µA | ||
1 | 1.0 | 1.3 | 2.6 | 17.3 | ||||||||
2 | 1.0 | 1.4 | 2.7 | 17.5 | ||||||||
3 | 1.0 | 1.4 | 3.1 | 2.7 | 18 | 36 | ||||||
ILPM3.5,RTC,VCC | Low-power mode 3.5 (LPM3.5) current with active RTC into primary supply pin DVCC (10) | 3 V | 0.5 | 1.25 | 2.3 | µA | ||||||
ILPM3.5,RTC,VBAT | Low-power mode 3.5 (LPM3.5) current with active RTC into backup supply pin VBAT(11) | 3 V | 0.6 | 0.78 | 1.3 | µA | ||||||
ILPM3.5,RTC,TOT | Total Low-power mode 3.5 (LPM3.5) current with active RTC(12) | 3 V | 1.0 | 1.1 | 1.2 | 1.93 | 3.3 | µA | ||||
ILPM4.5 | Low-power mode 4.5(8) | 3 V | 0.4 | 0.45 | 0.6 | 0.5 | 1.21 | 2.4 | µA |
PARAMETER | VCC | PMMCOREVx | TEMPERATURE (TJ) | UNIT | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
–40°C | 25°C | 60°C | 105°C | |||||||||
TYP | MAX | TYP | MAX | TYP | MAX | TYP | MAX | |||||
ILPM3 LCD, int. bias | Low-power mode 3 (LPM3) current, LCD 4-mux mode, internal biasing, charge pump disabled(1) (2) | 3 V | 0 | 2.7 | 3.3 | 4.8 | 4.7 | 18.3 | 35 | µA | ||
1 | 2.9 | 3.5 | 5.0 | 18.7 | ||||||||
2 | 3.0 | 3.7 | 5.2 | 19 | ||||||||
3 | 3.1 | 3.7 | 5.3 | 5.2 | 19.3 | 37 | ||||||
ILPM3 LCD,CP | Low-power mode 3 (LPM3) current, LCD 4-mux mode, internal biasing, charge pump enabled(1) (3) | 2.2 V | 0 | 3.6 | µA | |||||||
1 | 3.7 | |||||||||||
2 | 4.0 | |||||||||||
3 V | 0 | 3.5 | ||||||||||
1 | 3.7 | |||||||||||
2 | 3.8 | |||||||||||
3 | 3.9 |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
VIT+ | Positive-going input threshold voltage | 1.8 V | 0.80 | 1.40 | V | ||
3 V | 1.50 | 2.10 | |||||
VIT– | Negative-going input threshold voltage | 1.8 V | 0.45 | 1.00 | V | ||
3 V | 0.75 | 1.65 | |||||
Vhys | Input voltage hysteresis (VIT+ – VIT–) | 1.8 V | 0.3 | 0.8 | V | ||
3 V | 0.4 | 1.0 | |||||
RPull | Pullup or pulldown resistor(2) | For pullup: VIN = VSS
For pulldown: VIN = VCC |
20 | 35 | 50 | kΩ | |
CI | Input capacitance | VIN = VSS or VCC | 5 | pF |
PARAMETER | TEST CONDITIONS | VCC | MIN | MAX | UNIT | |
---|---|---|---|---|---|---|
Ilkg(Px.y) | High-impedance leakage current | (1)(2) | 1.8 V, 3 V | ±50 | nA |
PARAMETER | TEST CONDITIONS | VCC | MIN | MAX | UNIT | |
---|---|---|---|---|---|---|
VOH | High-level output voltage | I(OHmax) = –3 mA(1) | 1.8 V | VCC – 0.25 | VCC | V |
I(OHmax) = –10 mA(2) | VCC – 0.60 | VCC | ||||
I(OHmax) = –5 mA(1) | 3 V | VCC – 0.25 | VCC | |||
I(OHmax) = –15 mA(2) | VCC – 0.60 | VCC | ||||
VOL | Low-level output voltage | I(OLmax) = 3 mA(1) | 1.8 V | VSS | VSS + 0.25 | V |
I(OLmax) = 10 mA(2) | VSS | VSS + 0.60 | ||||
I(OLmax) = 5 mA(1) | 3 V | VSS | VSS + 0.25 | |||
I(OLmax) = 15 mA(2) | VSS | VSS + 0.60 |
PARAMETER | TEST CONDITIONS | VCC | MIN | MAX | UNIT | |
---|---|---|---|---|---|---|
VOH | High-level output voltage | I(OHmax) = –1 mA(1) | 1.8 V | VCC – 0.25 | VCC | V |
I(OHmax) = –3 mA(2) | VCC – 0.60 | VCC | ||||
I(OHmax) = –2 mA(1) | 3 V | VCC – 0.25 | VCC | |||
I(OHmax) = –6 mA(2) | VCC – 0.60 | VCC | ||||
VOL | Low-level output voltage | I(OLmax) = 1 mA(1) | 1.8 V | VSS | VSS + 0.25 | V |
I(OLmax) = 3 mA(2) | VSS | VSS + 0.60 | ||||
I(OLmax) = 2 mA(1) | 3 V | VSS | VSS + 0.25 | |||
I(OLmax) = 6 mA(2) | VSS | VSS + 0.60 |
PARAMETER | PACKAGE | VALUE | UNIT | |
---|---|---|---|---|
θJA | Junction-to-ambient thermal resistance, still air(1) | QFP (PZ) | 122 | °C/W |
θJC(TOP) | Junction-to-case (top) thermal resistance(2) | QFP (PZ) | 83 | °C/W |
θJB | Junction-to-board thermal resistance(3) | QFP (PZ) | 98 | °C/W |
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)
VCC = 3 V |
VCC = 3 V |
VCC = 1.8 V |
VCC = 1.8 V |
over recommended ranges of supply voltage and operating junction temperature (unless otherwise noted)
VCC = 3 V |
VCC = 3 V |
VCC = 1.8 V |
VCC = 1.8 V |
TI recommends powering the AVCC and DVCC pins from the same source. At a minimum, during power up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits specified in the Absolute Maximum Ratings section. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM.
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
V(DVCC_BOR_IT–) | BORH on voltage, DVCC falling level | | dDVCC/dt | < 3 V/s | 1.45 | V | ||
V(DVCC_BOR_IT+) | BORH off voltage, DVCC rising level | | dDVCC/dt | < 3 V/s | 0.80 | 1.30 | 1.50 | V |
V(DVCC_BOR_hys) | BORH hysteresis | 60 | 250 | mV | ||
tRESET | Pulse duration required at RST/NMI pin to accept a reset | 2 | µs |
PARAMETER | TEST CONDITIONS | VCC | MIN | MAX | UNIT | |
---|---|---|---|---|---|---|
t(int) | External interrupt timing(2) | Port P1, P2, P3, P4: P1.x to P4.x, External trigger pulse duration to set interrupt flag | 2.2 V, 3 V | 20 | ns |
PARAMETER | TEST CONDITIONS | MIN | MAX | UNIT | ||
---|---|---|---|---|---|---|
fPx.y | Port output frequency (with load) | P3.4/TA2CLK/SMCLK/S27, CL = 20 pF, RL = 1 kΩ (1) or 3.2 kΩ(2) (3) |
VCC = 1.8 V, PMMCOREVx = 0 |
8 | MHz | |
VCC = 3 V, PMMCOREVx = 3 |
20 | |||||
fPort_CLK | Clock output frequency | P1.0/TA0CLK/ACLK/S39, P3.4/TA2CLK/SMCLK/S27, P2.0/P2MAP0 (P2MAP0 = PM_MCLK), CL = 20 pF(3) |
VCC = 1.8 V, PMMCOREVx = 0 |
8 | MHz | |
VCC = 3 V, PMMCOREVx = 3 |
20 |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
ΔIDVCC,LF | Differential XT1 oscillator crystal current consumption from lowest drive setting, LF mode | fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, TJ = 25°C |
3 V | 0.075 | µA | ||
fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 2, TJ = 25°C |
0.170 | ||||||
fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TJ = 25°C |
0.290 | ||||||
fXT1,LF0 | XT1 oscillator crystal frequency, LF mode | XTS = 0, XT1BYPASS = 0 | 32768 | Hz | |||
fXT1,LF,SW | XT1 oscillator logic-level square-wave input frequency, LF mode | XTS = 0, XT1BYPASS = 1(6) (7) | 10 | 32.768 | 50 | kHz | |
OALF | Oscillation allowance for LF crystals(8) | XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, fXT1,LF = 32768 Hz, CL,eff = 6 pF, TJ = 25°C |
3 V | 210 | kΩ | ||
XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, fXT1,LF = 32768 Hz, CL,eff = 12 pF, TJ = 25°C |
300 | ||||||
CL,eff | Integrated effective load capacitance, LF mode(1) | XTS = 0, XCAPx = 0(2) | 1 | pF | |||
XTS = 0, XCAPx = 1 | 5.5 | ||||||
XTS = 0, XCAPx = 2 | 8.5 | ||||||
XTS = 0, XCAPx = 3 | 12.0 | ||||||
Duty cycle, LF mode | XTS = 0, Measured at ACLK, fXT1,LF = 32768 Hz |
30% | 70% | ||||
fFault,LF | Oscillator fault frequency, LF mode(4) | XTS = 0(3) | 10 | 10000 | Hz | ||
tSTART,LF | Start-up time, LF mode | fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, TJ = 25°C, CL,eff = 6 pF |
3 V | 1000 | ms | ||
fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TJ = 25°C, CL,eff = 12 pF |
500 |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
IDVCC,XT2 | XT2 oscillator crystal current consumption | fOSC = 4 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 0, TJ = 25°C |
3 V | 200 | µA | ||
fOSC = 12 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 1, TJ = 25°C |
260 | ||||||
fOSC = 20 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 2, TJ = 25°C |
325 | ||||||
fOSC = 32 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 3, TJ = 25°C |
450 | ||||||
fXT2,HF0 | XT2 oscillator crystal frequency, mode 0 | XT2DRIVEx = 0, XT2BYPASS = 0(7) | 4 | 8 | MHz | ||
fXT2,HF1 | XT2 oscillator crystal frequency, mode 1 | XT2DRIVEx = 1, XT2BYPASS = 0(7) | 8 | 16 | MHz | ||
fXT2,HF2 | XT2 oscillator crystal frequency, mode 2 | XT2DRIVEx = 2, XT2BYPASS = 0(7) | 16 | 24 | MHz | ||
fXT2,HF3 | XT2 oscillator crystal frequency, mode 3 | XT2DRIVEx = 3, XT2BYPASS = 0(7) | 24 | 32 | MHz | ||
fXT2,HF,SW | XT2 oscillator logic-level square-wave input frequency | XT2BYPASS = 1(6) (7) | 0.7 | 32 | MHz | ||
OAHF | Oscillation allowance for HF crystals(8) | XT2DRIVEx = 0, XT2BYPASS = 0, fXT2,HF0 = 6 MHz, CL,eff = 15 pF, TJ = 25°C |
3 V | 450 | Ω | ||
XT2DRIVEx = 1, XT2BYPASS = 0, fXT2,HF1 = 12 MHz, CL,eff = 15 pF, TJ = 25°C |
320 | ||||||
XT2DRIVEx = 2, XT2BYPASS = 0, fXT2,HF2 = 20 MHz, CL,eff = 15 pF, TJ = 25°C |
200 | ||||||
XT2DRIVEx = 3, XT2BYPASS = 0, fXT2,HF3 = 32 MHz, CL,eff = 15 pF, TJ = 25°C |
200 | ||||||
tSTART,HF | Start-up time | fOSC = 6 MHz, XT2BYPASS = 0, XT2DRIVEx = 0, TJ = 25°C, CL,eff = 15 pF |
3 V | 0.5 | ms | ||
fOSC = 20 MHz, XT2BYPASS = 0, XT2DRIVEx = 3, TJ = 25°C, CL,eff = 15 pF |
0.3 | ||||||
CL,eff | Integrated effective load capacitance, HF mode(1) (2) | 1 | pF | ||||
Duty cycle | Measured at ACLK, fXT2,HF2 = 20 MHz | 40% | 50% | 60% | |||
fFault,HF | Oscillator fault frequency(4) | XT2BYPASS = 1(3) | 30 | 300 | kHz |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
fVLO | VLO frequency | Measured at ACLK | 1.8 V to 3.6 V | 6 | 9.4 | 14 | kHz |
dfVLO/dT | VLO frequency temperature drift | Measured at ACLK(1) | 1.8 V to 3.6 V | 0.5 | %/°C | ||
dfVLO/dVCC | VLO frequency supply voltage drift | Measured at ACLK(2) | 1.8 V to 3.6 V | 4 | %/V | ||
Duty cycle | Measured at ACLK | 1.8 V to 3.6 V | 40% | 50% | 60% |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
IREFO | REFO oscillator current consumption | TJ = 25°C | 1.8 V to 3.6 V | 3 | µA | ||
fREFO | REFO frequency calibrated | Measured at ACLK | 1.8 V to 3.6 V | 32768 | Hz | ||
REFO absolute tolerance calibrated | Full temperature range | 1.8 V to 3.6 V | ±3.5% | ||||
TJ = 25°C | 3 V | ±1.5% | |||||
dfREFO/dT | REFO frequency temperature drift | Measured at ACLK(1) | 1.8 V to 3.6 V | 0.01 | %/°C | ||
dfREFO/dVCC | REFO frequency supply voltage drift | Measured at ACLK(2) | 1.8 V to 3.6 V | 1.0 | %/V | ||
Duty cycle | Measured at ACLK | 1.8 V to 3.6 V | 40% | 50% | 60% | ||
tSTART | REFO start-up time | 40%/60% duty cycle | 1.8 V to 3.6 V | 25 | µs |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
fDCO(0,0) | DCO frequency (0, 0)(1) | DCORSELx = 0, DCOx = 0, MODx = 0 | 0.07 | 0.20 | MHz | |
fDCO(0,31) | DCO frequency (0, 31)(1) | DCORSELx = 0, DCOx = 31, MODx = 0 | 0.70 | 1.70 | MHz | |
fDCO(1,0) | DCO frequency (1, 0)(1) | DCORSELx = 1, DCOx = 0, MODx = 0 | 0.15 | 0.36 | MHz | |
fDCO(1,31) | DCO frequency (1, 31)(1) | DCORSELx = 1, DCOx = 31, MODx = 0 | 1.47 | 3.45 | MHz | |
fDCO(2,0) | DCO frequency (2, 0)(1) | DCORSELx = 2, DCOx = 0, MODx = 0 | 0.32 | 0.75 | MHz | |
fDCO(2,31) | DCO frequency (2, 31)(1) | DCORSELx = 2, DCOx = 31, MODx = 0 | 3.17 | 7.38 | MHz | |
fDCO(3,0) | DCO frequency (3, 0)(1) | DCORSELx = 3, DCOx = 0, MODx = 0 | 0.64 | 1.51 | MHz | |
fDCO(3,31) | DCO frequency (3, 31)(1) | DCORSELx = 3, DCOx = 31, MODx = 0 | 6.07 | 14.0 | MHz | |
fDCO(4,0) | DCO frequency (4, 0)(1) | DCORSELx = 4, DCOx = 0, MODx = 0 | 1.3 | 3.2 | MHz | |
fDCO(4,31) | DCO frequency (4, 31)(1) | DCORSELx = 4, DCOx = 31, MODx = 0 | 12.3 | 28.2 | MHz | |
fDCO(5,0) | DCO frequency (5, 0)(1) | DCORSELx = 5, DCOx = 0, MODx = 0 | 2.5 | 6.0 | MHz | |
fDCO(5,31) | DCO frequency (5, 31)(1) | DCORSELx = 5, DCOx = 31, MODx = 0 | 23.7 | 54.1 | MHz | |
fDCO(6,0) | DCO frequency (6, 0)(1) | DCORSELx = 6, DCOx = 0, MODx = 0 | 4.6 | 10.7 | MHz | |
fDCO(6,31) | DCO frequency (6, 31)(1) | DCORSELx = 6, DCOx = 31, MODx = 0 | 39.0 | 88.0 | MHz | |
fDCO(7,0) | DCO frequency (7, 0)(1) | DCORSELx = 7, DCOx = 0, MODx = 0 | 8.5 | 19.6 | MHz | |
fDCO(7,31) | DCO frequency (7, 31)(1) | DCORSELx = 7, DCOx = 31, MODx = 0 | 60 | 135 | MHz | |
SDCORSEL | Frequency step between range DCORSEL and DCORSEL + 1 | SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO) | 1.2 | 2.3 | ratio | |
SDCO | Frequency step between tap DCO and DCO + 1 | SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO) | 1.02 | 1.12 | ratio | |
Duty cycle | Measured at SMCLK | 40% | 50% | 60% | ||
dfDCO/dT | DCO frequency temperature drift | fDCO = 1 MHz, | 0.1 | %/°C | ||
dfDCO/dVCC | DCO frequency voltage drift | fDCO = 1 MHz | 1.9 | %/V |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
tWAKE-UP-FAST | Wake-up time from LPM2, LPM3, or LPM4 to active mode(1) | PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 1, fMCLK ≥ 4.0 MHz |
3 | 6.5 | µs | |
PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 1, 1 MHz < fMCLK < 4.0 MHz |
4 | 8.0 | ||||
tWAKE-UP-SLOW | Wake-up time from LPM2, LPM3 or LPM4 to active mode(2) | PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 0 |
150 | 165 | ||
tWAKE-UP LPM5 | Wake-up time from LPM3.5 or LPM4.5 to active mode(3) | 2 | 3 | ms | ||
tWAKE-UP-RESET | Wake-up time from RST or BOR event to active mode(3) | 2 | 3 | ms |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
VCORE3(AM) | Core voltage, active mode, PMMCOREV = 3 | 2.4 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 21 mA | 1.90 | V | ||
VCORE2(AM) | Core voltage, active mode, PMMCOREV = 2 | 2.2 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 21 mA | 1.80 | V | ||
VCORE1(AM) | Core voltage, active mode, PMMCOREV = 1 | 2 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 17 mA | 1.60 | V | ||
VCORE0(AM) | Core voltage, active mode, PMMCOREV = 0 | 1.8 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 13 mA | 1.40 | V | ||
VCORE3(LPM) | Core voltage, low-current mode, PMMCOREV = 3 | 2.4 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA | 1.94 | V | ||
VCORE2(LPM) | Core voltage, low-current mode, PMMCOREV = 2 | 2.2 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA | 1.84 | V | ||
VCORE1(LPM) | Core voltage, low-current mode, PMMCOREV = 1 | 2 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA | 1.64 | V | ||
VCORE0(LPM) | Core voltage, low-current mode, PMMCOREV = 0 | 1.8 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA | 1.44 | V |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
I(SVSH) | SVS current consumption | SVSHE = 0, DVCC = 3.6 V | 0 | nA | ||
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0 | 200 | |||||
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1 | 2.0 | µA | ||||
V(SVSH_IT–) | SVSH on voltage level(1) | SVSHE = 1, SVSHRVL = 0 | 1.59 | 1.64 | 1.69 | V |
SVSHE = 1, SVSHRVL = 1 | 1.79 | 1.84 | 1.91 | |||
SVSHE = 1, SVSHRVL = 2 | 1.98 | 2.04 | 2.11 | |||
SVSHE = 1, SVSHRVL = 3 | 2.10 | 2.16 | 2.23 | |||
V(SVSH_IT+) | SVSH off voltage level(1) | SVSHE = 1, SVSMHRRL = 0 | 1.62 | 1.74 | 1.81 | V |
SVSHE = 1, SVSMHRRL = 1 | 1.88 | 1.94 | 2.01 | |||
SVSHE = 1, SVSMHRRL = 2 | 2.07 | 2.14 | 2.21 | |||
SVSHE = 1, SVSMHRRL = 3 | 2.20 | 2.26 | 2.33 | |||
SVSHE = 1, SVSMHRRL = 4 | 2.32 | 2.40 | 2.48 | |||
SVSHE = 1, SVSMHRRL = 5 | 2.56 | 2.70 | 2.84 | |||
SVSHE = 1, SVSMHRRL = 6 | 2.85 | 3.00 | 3.15 | |||
SVSHE = 1, SVSMHRRL = 7 | 2.85 | 3.00 | 3.15 | |||
tpd(SVSH) | SVSH propagation delay | SVSHE = 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1 | 2.5 | µs | ||
SVSHE = 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0 | 20 | |||||
t(SVSH) | SVSH on or off delay time | SVSHE = 0→1, SVSHFP = 1 | 12.5 | µs | ||
SVSHE = 0→1, SVSHFP = 0 | 100 | |||||
dVDVCC/dt | DVCC rise time | 0 | 1000 | V/s |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
I(SVMH) | SVMH current consumption | SVMHE = 0, DVCC = 3.6 V | 0 | nA | ||
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0 | 200 | |||||
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1 | 2.0 | µA | ||||
V(SVMH) | SVMH on or off voltage level(1) | SVMHE = 1, SVSMHRRL = 0 | 1.65 | 1.74 | 1.86 | V |
SVMHE = 1, SVSMHRRL = 1 | 1.85 | 1.94 | 2.02 | |||
SVMHE = 1, SVSMHRRL = 2 | 2.02 | 2.14 | 2.22 | |||
SVMHE = 1, SVSMHRRL = 3 | 2.18 | 2.26 | 2.35 | |||
SVMHE = 1, SVSMHRRL = 4 | 2.32 | 2.40 | 2.48 | |||
SVMHE = 1, SVSMHRRL = 5 | 2.56 | 2.70 | 2.84 | |||
SVMHE = 1, SVSMHRRL = 6 | 2.85 | 3.00 | 3.15 | |||
SVMHE = 1, SVSMHRRL = 7 | 2.85 | 3.00 | 3.15 | |||
SVMHE = 1, SVMHOVPE = 1 | 3.75 | |||||
tpd(SVMH) | SVMH propagation delay | SVMHE = 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1 | 2.5 | µs | ||
SVMHE = 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0 | 20 | |||||
t(SVMH) | SVMH on or off delay time | SVMHE = 0→1, SVSMFP = 1 | 12.5 | µs | ||
SVMHE = 0→1, SVMHFP = 0 | 100 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
I(SVSL) | SVSL current consumption | SVSLE = 0, PMMCOREV = 2 | 0 | nA | ||
SVSLE = 1, PMMCOREV = 2, SVSLFP = 0 | 200 | |||||
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1 | 2.0 | µA | ||||
tpd(SVSL) | SVSL propagation delay | SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1 | 2.5 | µs | ||
SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0 | 20 | |||||
t(SVSL) | SVSL on or off delay time | SVSLE = 0→1, SVSLFP = 1 | 12.5 | µs | ||
SVSLE = 0→1, SVSLFP = 0 | 100 |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
I(SVML) | SVML current consumption | SVMLE = 0, PMMCOREV = 2 | 0 | nA | ||
SVMLE = 1, PMMCOREV = 2, SVMLFP = 0 | 200 | |||||
SVMLE = 1, PMMCOREV = 2, SVMLFP = 1 | 2.0 | µA | ||||
tpd(SVML) | SVML propagation delay | SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1 | 2.5 | µs | ||
SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0 | 20 | |||||
t(SVML) | SVML on or off delay time | SVMLE = 0→1, SVMLFP = 1 | 12.5 | µs | ||
SVMLE = 0→1, SVMLFP = 0 | 100 |
PARAMETER | TEST CONDITIONS | VCC | MIN | MAX | UNIT | |
---|---|---|---|---|---|---|
fTA | Timer_A input clock frequency | Internal: SMCLK, ACLK External: TACLK Duty cycle = 50% ±10% |
1.8 V, 3 V | 20 | MHz | |
tTA,cap | Timer_A capture timing | All capture inputs, Minimum pulse duration required for capture | 1.8 V, 3 V | 20 | ns |
PARAMETER | TEST CONDITIONS | VCC | MIN | MAX | UNIT | |
---|---|---|---|---|---|---|
fTB | Timer_B input clock frequency | Internal: SMCLK, ACLK External: TBCLK Duty cycle = 50% ±10% |
1.8 V, 3 V | 20 | MHz | |
tTB,cap | Timer_B capture timing | All capture inputs, Minimum pulse duration required for capture | 1.8 V, 3 V | 20 | ns |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|---|
IVBAT | Current into VBAT terminal if no primary battery is connected | VBAT = 1.7 V, DVCC not connected, RTC running |
TJ = –40°C | 0.43 | µA | |||
TJ = 25°C | 0.52 | |||||||
TJ = 60°C | 0.58 | |||||||
TJ = 105°C | 0.66 | |||||||
VBAT = 2.2 V, DVCC not connected, RTC running |
TJ = –40°C | 0.50 | ||||||
TJ = 25°C | 0.59 | |||||||
TJ = 60°C | 0.64 | |||||||
TJ = 105°C | 0.72 | |||||||
VBAT = 3 V, DVCC not connected, RTC running |
TJ = –40°C | 0.68 | ||||||
TJ = 25°C | 0.75 | |||||||
TJ = 60°C | 0.79 | |||||||
TJ = 105°C | 0.87 | |||||||
VSWITCH | Switch-over level (VCC to VBAT) | CVCC = 4.7 µF | General | VSVSH_IT- | V | |||
SVSHRL = 0 | 1.59 | 1.69 | ||||||
SVSHRL = 1 | 1.79 | 1.91 | ||||||
SVSHRL = 2 | 1.98 | 2.11 | ||||||
SVSHRL = 3 | 2.10 | 2.23 | ||||||
RON_VBAT | On-resistance of switch between VBAT and VBAK | VBAT = 1.8 V | 0 V | 0.35 | 1 | kΩ | ||
VBAT3 | VBAT to ADC input channel 12: VBAT divided, VBAT3 ≈ VBAT/3 |
1.8 V | 0.6 | ±5% | V | |||
3 V | 1.0 | ±5% | ||||||
3.6 V | 1.2 | ±5% | ||||||
tSample, VBAT3 | VBAT to ADC: Sampling time required if VBAT3 selected | ADC12ON = 1, Error of conversion result ≤ 2 LSB |
1000 | ns | ||||
VCHVx | Charger end voltage | CHVx = 2 | 2.65 | 2.7 | 2.9 | V | ||
RCHARGE | Charge limiting resistor | CHCx = 1 | 5.2 | kΩ | ||||
CHCx = 2 | 10.2 | |||||||
CHCx = 3 | 20 |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
fUSCI | USCI input clock frequency | Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ±10% |
fSYSTEM | MHz | |||
fBITCLK | BITCLK clock frequency (equals baud rate in MBaud) |
1 | MHz | ||||
tτ | UART receive deglitch time(1) | 2.2 V | 50 | 600 | ns | ||
3 V | 50 | 600 |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
fUSCI | USCI input clock frequency | SMCLK or ACLK, Duty cycle = 50% ±10% |
fSYSTEM | MHz | |||
tSU,MI | SOMI input data setup time | PMMCOREV = 0 | 1.8 V | 55 | ns | ||
3 V | 38 | ||||||
PMMCOREV = 3 | 2.4 V | 30 | |||||
3 V | 25 | ||||||
tHD,MI | SOMI input data hold time | PMMCOREV = 0 | 1.8 V | 0 | ns | ||
3 V | 0 | ||||||
PMMCOREV = 3 | 2.4 V | 0 | |||||
3 V | 0 | ||||||
tVALID,MO | SIMO output data valid time(2) | UCLK edge to SIMO valid, CL = 20 pF, PMMCOREV = 0 |
1.8 V | 20 | ns | ||
3 V | 18 | ||||||
UCLK edge to SIMO valid, CL = 20 pF, PMMCOREV = 3 |
2.4 V | 16 | |||||
3 V | 15 | ||||||
tHD,MO | SIMO output data hold time(3) | CL = 20 pF, PMMCOREV = 0 | 1.8 V | –10 | ns | ||
3 V | –8 | ||||||
CL = 20 pF, PMMCOREV = 3 | 2.4 V | –10 | |||||
3 V | –8 |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
tSTE,LEAD | STE lead time, STE low to clock | PMMCOREV = 0 | 1.8 V | 11 | ns | ||
3 V | 8 | ||||||
PMMCOREV = 3 | 2.4 V | 7 | |||||
3 V | 6 | ||||||
tSTE,LAG | STE lag time, last clock to STE high | PMMCOREV = 0 | 1.8 V | 1 | ns | ||
3 V | 1 | ||||||
PMMCOREV = 3 | 2.4 V | 1 | |||||
3 V | 1 | ||||||
tSTE,ACC | STE access time, STE low to SOMI data out | PMMCOREV = 0 | 1.8 V | 66 | ns | ||
3 V | 50 | ||||||
PMMCOREV = 3 | 2.4 V | 36 | |||||
3 V | 30 | ||||||
tSTE,DIS | STE disable time, STE high to SOMI high impedance | PMMCOREV = 0 | 1.8 V | 30 | ns | ||
3 V | 30 | ||||||
PMMCOREV = 3 | 2.4 V | 30 | |||||
3 V | 30 | ||||||
tSU,SI | SIMO input data setup time | PMMCOREV = 0 | 1.8 V | 5 | ns | ||
3 V | 5 | ||||||
PMMCOREV = 3 | 2.4 V | 2 | |||||
3 V | 2 | ||||||
tHD,SI | SIMO input data hold time | PMMCOREV = 0 | 1.8 V | 5 | ns | ||
3 V | 5 | ||||||
PMMCOREV = 3 | 2.4 V | 5 | |||||
3 V | 5 | ||||||
tVALID,SO | SOMI output data valid time(2) | UCLK edge to SOMI valid, CL = 20 pF, PMMCOREV = 0 |
1.8 V | 76 | ns | ||
3 V | 60 | ||||||
UCLK edge to SOMI valid, CL = 20 pF, PMMCOREV = 3 |
2.4 V | 44 | |||||
3 V | 40 | ||||||
tHD,SO | SOMI output data hold time(3) | CL = 20 pF, PMMCOREV = 0 | 1.8 V | 12 | ns | ||
3 V | 12 | ||||||
CL = 20 pF, PMMCOREV = 3 | 2.4 V | 12 | |||||
3 V | 12 |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
fUSCI | USCI input clock frequency | Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ±10% |
fSYSTEM | MHz | |||
fSCL | SCL clock frequency | 2.2 V, 3 V | 0 | 400 | kHz | ||
tHD,STA | Hold time (repeated) START | fSCL ≤ 100 kHz | 2.2 V, 3 V | 4.0 | µs | ||
fSCL > 100 kHz | 0.6 | ||||||
tSU,STA | Setup time for a repeated START | fSCL ≤ 100 kHz | 2.2 V, 3 V | 4.7 | µs | ||
fSCL > 100 kHz | 0.6 | ||||||
tHD,DAT | Data hold time | 2.2 V, 3 V | 0 | ns | |||
tSU,DAT | Data setup time | 2.2 V, 3 V | 250 | ns | |||
tSU,STO | Setup time for STOP | fSCL ≤ 100 kHz | 2.2 V, 3 V | 4.0 | µs | ||
fSCL > 100 kHz | 0.6 | ||||||
tSP | Pulse duration of spikes suppressed by input filter | 2.2 V | 50 | 600 | ns | ||
3 V | 50 | 600 |
PARAMETER | CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
VCC,LCD_B,CP en,3.6 | Supply voltage range, charge pump enabled, VLCD ≤ 3.6 V | LCDCPEN = 1, 0000 < VLCDx ≤ 1111 (charge pump enabled, VLCD ≤ 3.6 V) | 2.2 | 3.6 | V | |
VCC,LCD_B,CP en,3.3 | Supply voltage range, charge pump enabled, VLCD ≤ 3.3 V | LCDCPEN = 1, 0000 < VLCDx ≤ 1100 (charge pump enabled, VLCD ≤ 3.3 V) | 2.0 | 3.6 | V | |
VCC,LCD_B,int. bias | Supply voltage range, internal biasing, charge pump disabled | LCDCPEN = 0, VLCDEXT = 0 | 2.4 | 3.6 | V | |
VCC,LCD_B,ext. bias | Supply voltage range, external biasing, charge pump disabled | LCDCPEN = 0, VLCDEXT = 0 | 2.4 | 3.6 | V | |
VCC,LCD_B,VLCDEXT | Supply voltage range, external LCD voltage, internal or external biasing, charge pump disabled | LCDCPEN = 0, VLCDEXT = 1 | 2.0 | 3.6 | V | |
VLCDCAP/R33 | External LCD voltage at LCDCAP/R33, internal or external biasing, charge pump disabled | LCDCPEN = 0, VLCDEXT = 1 | 2.4 | 3.6 | V | |
CLCDCAP | Capacitor on LCDCAP when charge pump enabled | LCDCPEN = 1, VLCDx > 0000 (charge pump enabled) | 4.7 | 10 | µF | |
fFrame | LCD frame frequency range | fLCD = 2 × mux × fFRAME with mux = 1 (static), 2, 3, 4 | 0 | 100 | Hz | |
fACLK,in | ACLK input frequency range | 30 | 32 | 40 | kHz | |
CPanel | Panel capacitance | 100-Hz frame frequency | 10000 | pF | ||
VR33 | Analog input voltage at R33 | LCDCPEN = 0, VLCDEXT = 1 | 2.4 | VCC + 0.2 | V | |
VR23,1/3bias | Analog input voltage at R23 | LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0 | VR13 | VR03 + 2/3 × (VR33 – VR03) | VR33 | V |
VR13,1/3bias | Analog input voltage at R13 with 1/3 biasing | LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0 | VR03 | VR03 + 1/3 × (VR33 – VR03) | VR23 | V |
VR13,1/2bias | Analog input voltage at R13 with 1/2 biasing | LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 1 | VR03 | VR03 + 1/2 × (VR33 – VR03) | VR33 | V |
VR03 | Analog input voltage at R03 | R0EXT = 1 | VSS | V | ||
VLCD-VR03 | Voltage difference between VLCD and R03 | LCDCPEN = 0, R0EXT = 1 | 2.4 | VCC + 0.2 | V | |
VLCDREF/R13 | External LCD reference voltage applied at LCDREF/R13 | VLCDREFx = 01 | 0.8 | 1.2 | 1.5 | V |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
VLCD | LCD voltage | VLCDx = 0000, VLCDEXT = 0 | 2.4 V to 3.6 V | VCC | V | ||
LCDCPEN = 1, VLCDx = 0001 | 2 V to 3.6 V | 2.59 | |||||
LCDCPEN = 1, VLCDx = 0010 | 2 V to 3.6 V | 2.66 | |||||
LCDCPEN = 1, VLCDx = 0011 | 2 V to 3.6 V | 2.72 | |||||
LCDCPEN = 1, VLCDx = 0100 | 2 V to 3.6 V | 2.79 | |||||
LCDCPEN = 1, VLCDx = 0101 | 2 V to 3.6 V | 2.85 | |||||
LCDCPEN = 1, VLCDx = 0110 | 2 V to 3.6 V | 2.92 | |||||
LCDCPEN = 1, VLCDx = 0111 | 2 V to 3.6 V | 2.98 | |||||
LCDCPEN = 1, VLCDx = 1000 | 2 V to 3.6 V | 3.05 | |||||
LCDCPEN = 1, VLCDx = 1001 | 2 V to 3.6 V | 3.10 | |||||
LCDCPEN = 1, VLCDx = 1010 | 2 V to 3.6 V | 3.17 | |||||
LCDCPEN = 1, VLCDx = 1011 | 2 V to 3.6 V | 3.24 | |||||
LCDCPEN = 1, VLCDx = 1100 | 2 V to 3.6 V | 3.30 | |||||
LCDCPEN = 1, VLCDx = 1101 | 2.2 V to 3.6 V | 3.36 | |||||
LCDCPEN = 1, VLCDx = 1110 | 2.2 V to 3.6 V | 3.42 | |||||
LCDCPEN = 1, VLCDx = 1111 | 2.2 V to 3.6 V | 3.48 | 3.6 | ||||
ICC,Peak,CP | Peak supply currents due to charge pump activities | LCDCPEN = 1, VLCDx = 1111 | 2.2 V | 400 | µA | ||
tLCD,CP,on | Time to charge CLCD when discharged | CLCD = 4.7 µF, LCDCPEN = 0→1, VLCDx = 1111 | 2.2 V | 100 | 500 | ms | |
ICP,Load | Maximum charge pump load current | LCDCPEN = 1, VLCDx = 1111 | 2.2 V | 50 | µA | ||
RLCD,Seg | LCD driver output impedance, segment lines | LCDCPEN = 1, VLCDx = 1000, ILOAD = ±10 µA |
2.2 V | 10 | kΩ | ||
RLCD,COM | LCD driver output impedance, common lines | LCDCPEN = 1, VLCDx = 1000, ILOAD = ±10 µA |
2.2 V | 10 | kΩ |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
AVCC | Analog supply voltage | AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V |
2.2 | 3.6 | V | ||
V(Ax) | Analog input voltage range(3) | All ADC12 analog input pins Ax | 0 | AVCC | V | ||
IADC12_A | Operating supply current into AVCC terminal(4) | fADC12CLK = 5.0 MHz(1) | 2.2 V | 150 | 200 | µA | |
3 V | 150 | 250 | |||||
CI | Input capacitance | Only one terminal Ax can be selected at one time | 2.2 V | 20 | 25 | pF | |
RI | Input MUX ON resistance | 0 V ≤ VIN ≤ V(AVCC) | 10 | 200 | 1900 | Ω |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
fADC12CLK | ADC conversion clock | For specified performance of ADC12 linearity parameters using an external reference voltage or AVCC as reference(1) | 2.2 V, 3 V | 0.45 | 4.8 | 5.0 | MHz |
For specified performance of ADC12 linearity parameters using the internal reference(2) | 0.45 | 2.4 | 4.0 | ||||
For specified performance of ADC12 linearity parameters using the internal reference(3) | 0.45 | 2.4 | 2.7 | ||||
fADC12OSC | Internal ADC12 oscillator(6) | ADC12DIV = 0, fADC12CLK = fADC12OSC | 2.2 V, 3 V | 4.2 | 4.8 | 5.4 | MHz |
tCONVERT | Conversion time | REFON = 0, Internal oscillator, ADC12OSC used for ADC conversion clock |
2.2 V, 3 V | 2.4 | 3.1 | µs | |
External fADC12CLK from ACLK, MCLK or SMCLK, ADC12SSEL ≠ 0 | See (5) | ||||||
tSample | Sampling time | RS = 400 Ω, RI = 200 Ω, CI = 20 pF, τ = [RS + RI] × CI (4) |
2.2 V, 3 V | 1000 | ns |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
EI | Integral linearity error(2) | 1.4 V ≤ dVREF ≤ 1.6 V(1) | 2.2 V, 3 V | ±2 | LSB | ||
1.6 V < dVREF (1) | ±1.7 | ||||||
ED | Differential linearity error(2) | See (1) | 2.2 V, 3 V | ±1 | LSB | ||
EO | Offset error(3) | dVREF ≤ 2.2 V(1) | 2.2 V, 3 V | ±3 | ±5.6 | LSB | |
dVREF > 2.2 V(1) | 2.2 V, 3 V | ±1.5 | ±3.5 | ||||
EG | Gain error(3) | See (1) | 2.2 V, 3 V | ±1 | ±2.5 | LSB | |
ET | Total unadjusted error | dVREF ≤ 2.2 V(1) | 2.2 V, 3 V | ±3.5 | ±7.1 | LSB | |
dVREF > 2.2 V(1) | 2.2 V, 3 V | ±2 | ±5 |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
EI | Integral linearity error(2) | See (1) | 2.2 V, 3 V | ±2.0 | LSB | ||
ED | Differential linearity error(2) | See (1) | 2.2 V, 3 V | ±1 | LSB | ||
EO | Offset error(3) | See (1) | 2.2 V, 3 V | ±1 | ±2 | LSB | |
EG | Gain error(3) | See (1) | 2.2 V, 3 V | ±2 | ±4 | LSB | |
ET | Total unadjusted error | See (1) | 2.2 V, 3 V | ±2 | ±5 | LSB |
PARAMETER | TEST CONDITIONS(1) | VCC | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|---|
EI | Integral linearity error(2) | ADC12SR = 0, REFOUT = 1 | fADC12CLK ≤ 4.0 MHz | 2.2 V, 3 V | ±2.0 | LSB | ||
ADC12SR = 0, REFOUT = 0 | fADC12CLK ≤ 2.7 MHz | ±2.5 | ||||||
ED | Differential linearity error(2) | ADC12SR = 0, REFOUT = 1 | fADC12CLK ≤ 4.0 MHz | 2.2 V, 3 V | –1 | +1.5 | LSB | |
ADC12SR = 0, REFOUT = 1 | fADC12CLK ≤ 2.7 MHz | ±1 | ||||||
ADC12SR = 0, REFOUT = 0 | fADC12CLK ≤ 2.7 MHz | –1 | +2.5 | |||||
EO | Offset error(3) | ADC12SR = 0, REFOUT = 1 | fADC12CLK ≤ 4.0 MHz | 2.2 V, 3 V | ±2 | ±4 | LSB | |
ADC12SR = 0, REFOUT = 0 | fADC12CLK ≤ 2.7 MHz | ±2 | ±4 | |||||
EG | Gain error(3) | ADC12SR = 0, REFOUT = 1 | fADC12CLK ≤ 4.0 MHz | 2.2 V, 3 V | ±1 | ±2.5 | LSB | |
ADC12SR = 0, REFOUT = 0 | fADC12CLK ≤ 2.7 MHz | ±1%(4) | VREF | |||||
ET | Total unadjusted error | ADC12SR = 0, REFOUT = 1 | fADC12CLK ≤ 4.0 MHz | 2.2 V, 3 V | ±2 | ±5 | LSB | |
ADC12SR = 0, REFOUT = 0 | fADC12CLK ≤ 2.7 MHz | ±1%(4) | VREF |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
VSENSOR | See Figure 5-16(2) | ADC12ON = 1, INCH = 0Ah, TJ = 0°C | 2.2 V | 680 | mV | ||
3 V | 680 | ||||||
tSENSOR(sample) | Sample time required if channel 10 is selected(3) | ADC12ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB |
2.2 V | 30 | µs | ||
3 V | 30 | ||||||
VMID | AVCC divider at channel 11 | ADC12ON = 1, INCH = 0Bh, VMID ≈ 0.5 × VAVCC |
2.2 V | 1.06 | 1.1 | 1.14 | V |
3 V | 1.46 | 1.5 | 1.54 | ||||
tVMID(sample) | Sample time required if channel 11 is selected(4) | ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB |
2.2 V, 3 V | 1000 | ns |
PARAMETER | TEST CONDITIONS | VCC | MIN | MAX | UNIT | |
---|---|---|---|---|---|---|
VeREF+ | Positive external reference voltage input | VeREF+ > VREF–/VeREF– (2) | 1.4 | AVCC | V | |
VREF–/VeREF– | Negative external reference voltage input | VeREF+ > VREF–/VeREF– (3) | 0 | 1.2 | V | |
(VeREF+ – VREF–/VeREF–) |
Differential external reference voltage input | VeREF+ > VREF–/VeREF– (4) | 1.4 | AVCC | V | |
IVeREF+, IVREF–/VeREF– | Static input current | 1.4 V ≤ VeREF+ ≤ VAVCC, VeREF– = 0 V, fADC12CLK = 5 MHz, ADC12SHTx = 1h, Conversion rate 200 ksps |
2.2 V, 3 V | –32 | 32 | µA |
1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V, fADC12CLK = 5 MHZ, ADC12SHTx = 8h, Conversion rate 20 ksps |
2.2 V, 3 V | –1.2 | +1.2 | |||
CVREF+/- | Capacitance at VREF+ or VREF- terminal(5) | 10 | µF |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|---|
VREF+ | Positive built-in reference voltage output | REFVSEL = {2} for 2.5 V, REFON = REFOUT = 1, IVREF+ = 0 A |
3 V | 2.5 | ±1% | V | ||
REFVSEL = {1} for 2 V, REFON = REFOUT = 1, IVREF+ = 0 A |
3 V | 2.0 | ±1% | |||||
REFVSEL = {0} for 1.5 V, REFON = REFOUT = 1, IVREF+ = 0 A |
2.2 V, 3 V | 1.5 | ±1% | |||||
AVCC(min) | AVCC minimum voltage, Positive built-in reference active | REFVSEL = {0} for 1.5 V | 2.2 | V | ||||
REFVSEL = {1} for 2 V | 2.3 | |||||||
REFVSEL = {2} for 2.5 V | 2.8 | |||||||
IREF+ | Operating supply current into AVCC terminal (2) (7) | ADC12SR = 1(8), REFON = 1, REFOUT = 0, REFBURST = 0 |
3 V | 70 | 100 | µA | ||
ADC12SR = 1(8), REFON = 1, REFOUT = 1, REFBURST = 0 |
0.45 | 0.75 | mA | |||||
ADC12SR = 0(8), REFON = 1, REFOUT = 0, REFBURST = 0 |
210 | 310 | µA | |||||
ADC12SR = 0(8), REFON = 1, REFOUT = 1, REFBURST = 0 |
0.95 | 1.7 | mA | |||||
IL(VREF+) | Load-current regulation, VREF+ terminal(3) | REFVSEL = {0, 1, 2}, IVREF+ = +10 µA or –1000 µA, AVCC = AVCC(min) for each reference level, REFVSEL = {0, 1, 2}, REFON = REFOUT = 1 |
1500 | 2500 | µV/mA | |||
CVREF+ | Capacitance at VREF+ terminal | REFON = REFOUT = 1(6), 0 mA ≤ IVREF+ ≤ IVREF+(max) |
2.2 V, 3 V | 20 | 100 | pF | ||
TCREF+ | Temperature coefficient of built-in reference(4) | IVREF+ is a constant in the range of 0 mA ≤ IVREF+ ≤ –1 mA |
REFOUT = 0 | 2.2 V, 3 V | 20 | ppm/ °C | ||
TCREF+ | Temperature coefficient of built-in reference(4) | IVREF+ is a constant in the range of 0 mA ≤ IVREF+ ≤ –1 mA |
REFOUT = 1 | 2.2 V, 3 V | 20 | 50 | ppm/ °C | |
PSRR_DC | Power supply rejection ratio (DC) | AVCC = AVCC(min) to AVCC(max), TJ = 25°C, REFVSEL = {0, 1, 2}, REFON = 1, REFOUT = 0 or 1 |
120 | 300 | µV/V | |||
PSRR_AC | Power supply rejection ratio (AC) | AVCC = AVCC(min) to AVCC(max), TJ = 25°C, REFVSEL = {0, 1, 2}, REFON = 1, REFOUT = 0 or 1 |
1 | mV/V | ||||
tSETTLE | Settling time of reference voltage(5) | AVCC = AVCC(min) to AVCC(max), REFVSEL = {0, 1, 2}, REFOUT = 0, REFON = 0 → 1 |
75 | µs | ||||
AVCC = AVCC(min) to AVCC(max), CVREF = CVREF(max), REFVSEL = {0, 1, 2}, REFOUT = 1, REFON = 0 → 1 |
75 |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
AVCC | Analog supply voltage | AVCC = DVCC, AVSS = DVSS = 0 V | 2.20 | 3.60 | V | ||
IDD | Supply current, single DAC channel(1)(2) | DAC12AMPx = 2, DAC12IR = 0, DAC12IOG = 1 DAC12_xDAT = 0800h VeREF+ = VREF+ = 1.5 V |
3 V | 65 | 110 | µA | |
DAC12AMPx = 2, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AVCC |
2.2 V, 3 V | 65 | 110 | ||||
DAC12AMPx = 5, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AVCC |
250 | 300 | |||||
DAC12AMPx = 7, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = VREF+ = AVCC |
750 | 1000 | |||||
PSRR | Power supply rejection ratio(3)(4) | DAC12_xDAT = 800h, VeREF+ = 1.5 V, ΔAVCC = 100 mV |
2.2 V | 70 | dB | ||
DAC12_xDAT = 800h, VeREF+ = 1.5 V or 2.5 V, ΔAVCC = 100 mV |
3 V | 70 |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|---|
Resolution | 12-bit monotonic | 12 | bits | |||||
INL | Integral nonlinearity(1) | VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 | 2.2 V | ±2 | ±4 | LSB | ||
VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 | 3 V | ±2 | ±4 | |||||
DNL | Differential nonlinearity(1) | VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 | 2.2 V | ±0.4 | ±1 | LSB | ||
VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 | 3 V | ±0.4 | ±1 | |||||
EO | Offset voltage | Without calibration(1) (2) | VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 |
2.2 V | ±21 | mV | ||
VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 |
3 V | ±21 | ||||||
With calibration(1) (2) | VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1 |
2.2 V | ±1.5 | |||||
VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 |
3 V | ±1.5 | ||||||
dE(O)/dT | Offset error temperature coefficient(1) | With calibration | 2.2 V, 3 V | ±10 | µV/°C | |||
EG | Gain error | VeREF+ = 1.5 V | 2.2 V | ±2.5 | %FSR | |||
VeREF+ = 2.5 V | 3 V | ±2.5 | ||||||
dE(G)/dT | Gain temperature coefficient(1) | 2.2 V, 3 V | 10 | ppm of FSR/°C | ||||
tOffset_Cal | Time for offset calibration(3) | DAC12AMPx = 2 | 2.2 V, 3 V | 165 | ms | |||
DAC12AMPx = 3, 5 | 66 | |||||||
DAC12AMPx = 4, 6, 7 | 16.5 |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
VO | Output voltage range(1) (see Figure 5-18) | No load, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 |
2.2 V, 3 V | 0 | 0.005 | V | |
No load, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 |
AVCC – 0.05 | AVCC | |||||
RLoad = 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 |
0 | 0.1 | |||||
RLoad = 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 |
AVCC – 0.13 | AVCC | |||||
CL(DAC12) | Maximum DAC12 load capacitance | 2.2 V, 3 V | 100 | pF | |||
IL(DAC12) | Maximum DAC12 load current | DAC12AMPx = 2, DAC12_xDAT = 0FFFh, VO/P(DAC12) > AVCC – 0.3 |
2.2 V, 3 V | –1 | mA | ||
DAC12AMPx = 2, DAC12_xDAT = 0h, VO/P(DAC12) < 0.3 V |
1 | ||||||
RO/P(DAC12) | Output resistance (see Figure 5-18) | RLoad = 3 kΩ, VO/P(DAC12) < 0.3 V, DAC12AMPx = 2, DAC12_xDAT = 0h |
2.2 V, 3 V | 150 | 250 | Ω | |
RLoad = 3 kΩ, VO/P(DAC12) > AVCC – 0.3 V, DAC12_xDAT = 0FFFh |
150 | 250 | |||||
RLoad = 3 kΩ, 0.3 V ≤ VO/P(DAC12) ≤ AVCC – 0.3 V |
6 |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
VeREF+ | Reference input voltage range | DAC12IR = 0(1) (2) | 2.2 V, 3 V | AVCC/3 | AVCC + 0.2 | V | |
DAC12IR = 1(3) (4) | AVCC | AVCC + 0.2 | |||||
Ri(VREF+), Ri(VeREF+) | Reference input resistance | DAC12_0 IR = DAC12_1 IR = 0 | 2.2 V, 3 V | 20 | MΩ | ||
DAC12_0 IR = 1, DAC12_1 IR = 0 | 52 | kΩ | |||||
DAC12_0 IR = 0, DAC12_1 IR = 1 | 52 | ||||||
DAC12_0 IR = DAC12_1 IR = 1, DAC12_0 SREFx = DAC12_1 SREFx(5) |
26 |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|---|
tON | DAC12 on time | DAC12_xDAT = 800h, ErrorV(O) < ±0.5 LSB(1) (see Figure 5-19) |
DAC12AMPx = 0 → {2, 3, 4} | 2.2 V, 3 V | 60 | 120 | µs | |
DAC12AMPx = 0 → {5, 6} | 15 | 30 | ||||||
DAC12AMPx = 0 → 7 | 6 | 12 | ||||||
tS(FS) | Settling time, full scale | DAC12_xDAT = 80h → F7Fh → 80h |
DAC12AMPx = 2 | 2.2 V, 3 V | 100 | 200 | µs | |
DAC12AMPx = 3, 5 | 40 | 80 | ||||||
DAC12AMPx = 4, 6, 7 | 15 | 30 | ||||||
tS(C-C) | Settling time, code to code | DAC12_xDAT = 3F8h → 408h → 3F8h, BF8h → C08h → BF8h |
DAC12AMPx = 2 | 2.2 V, 3 V | 5 | µs | ||
DAC12AMPx = 3, 5 | 2 | |||||||
DAC12AMPx = 4, 6, 7 | 1 | |||||||
SR | Slew rate | DAC12_xDAT = 80h → F7Fh → 80h(2) |
DAC12AMPx = 2 | 2.2 V, 3 V | 0.05 | 0.35 | V/µs | |
DAC12AMPx = 3, 5 | 0.35 | 1.10 | ||||||
DAC12AMPx = 4, 6, 7 | 1.50 | 5.20 | ||||||
Glitch energy | DAC12_xDAT = 800h → 7FFh → 800h |
DAC12AMPx = 7 | 2.2 V, 3 V | 35 | nV-s |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
BW–3dB | 3-dB bandwidth, VDC = 1.5 V, VAC = 0.1 VPP (see Figure 5-21) |
DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h TJ = 25°C |
2.2 V, 3 V | 40 | kHz | ||
DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h TJ = 25°C |
180 | ||||||
DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h TJ = 25°C |
550 | ||||||
Channel-to-channel crosstalk(1) (see Figure 5-22) | DAC12_0DAT = 800h, No load, DAC12_1DAT = 80h ↔ F7Fh, RLoad = 3 kΩ, fDAC12_1OUT = 10 kHz at 50/50 duty cycle, TJ = 25°C |
2.2 V, 3 V | –80 | dB | |||
DAC12_0DAT = 80h ↔ F7Fh, RLoad = 3 kΩ, DAC12_1DAT = 800h, No load, fDAC12_0OUT = 10 kHz at 50/50 duty cycle, TJ = 25°C |
–80 |
PARAMETER | TEST CONDITIONS | VCC | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|---|
VCC | Supply voltage | 1.8 | 3.6 | V | |||
IAVCC_COMP | Comparator operating supply current into AVCC terminal, Excludes reference resistor ladder | CBPWRMD = 00 | 1.8 V | 40 | µA | ||
2.2 V | 30 | 50 | |||||
3 V | 40 | 65 | |||||
CBPWRMD = 01 | 2.2 V, 3 V | 10 | 30 | ||||
CBPWRMD = 10 | 2.2 V, 3 V | 0.1 | 0.5 | ||||
IAVCC_REF | Quiescent current of local reference voltage amplifier into AVCC terminal | CBREFACC = 1, CBREFLx = 01 |
22 | µA | |||
VIC | Common mode input range | 0 | VCC – 1 | V | |||
VOFFSET | Input offset voltage | CBPWRMD = 00 | ±20 | mV | |||
CBPWRMD = 01, 10 | ±10 | ||||||
CIN | Input capacitance | 5 | pF | ||||
RSIN | Series input resistance | ON, switch closed | 3 | 4 | kΩ | ||
OFF, switch opened | 50 | MΩ | |||||
tPD | Propagation delay, response time | CBPWRMD = 00, CBF = 0 | 450 | ns | |||
CBPWRMD = 01, CBF = 0 | 600 | ||||||
CBPWRMD = 10, CBF = 0 | 50 | µs | |||||
tPD,filter | Propagation delay with filter active | CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 00 |
0.35 | 0.6 | 1.0 | µs | |
CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 01 |
0.6 | 1.0 | 1.8 | ||||
CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 10 |
1.0 | 1.8 | 3.4 | ||||
CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 11 |
1.8 | 3.4 | 6.5 | ||||
tEN_CMP | Comparator enable time, settling time | CBON = 0 to CBON = 1 CBPWRMD = 00, 01, 10 |
1 | 2 | µs | ||
tEN_REF | Resistor reference enable time | CBON = 0 to CBON = 1 | 0.3 | 1.5 | µs | ||
VCB_REF | Reference voltage for a given tap | VIN = reference into resistor ladder, n = 0 to 31 | VIN × (n + 0.5) / 32 | VIN × (n + 1) / 32 | VIN × (n + 1.5) / 32 | V |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
DVCC(PGM/ERASE) | Program and erase supply voltage | 1.8 | 3.6 | V | ||
IPGM | Average supply current from DVCC during program | 3 | 5 | mA | ||
IERASE | Average supply current from DVCC during erase | 6 | 17 | mA | ||
IMERASE, IBANK | Average supply current from DVCC during mass erase or bank erase | 6 | 17 | mA | ||
tCPT | Cumulative program time | See (1) | 16 | ms | ||
Program and erase endurance | 103 | 105 | cycles | |||
tRetention | Data retention duration | TJ = 25°C | 100 | years | ||
tWord | Word or byte program time | See (2) | 64 | 85 | µs | |
tBlock, 0 | Block program time for first byte or word | See (2) | 49 | 65 | µs | |
tBlock, 1–(N–1) | Block program time for each additional byte or word, except for last byte or word | See (2) | 37 | 49 | µs | |
tBlock, N | Block program time for last byte or word | See (2) | 55 | 73 | µs | |
tSeg Erase | Erase time for segment, mass erase, and bank erase when available | See (2) | 23 | 32 | ms | |
fMCLK,MRG | MCLK frequency in marginal read mode (FCTL4.MRG0 = 1 or FCTL4.MRG1 = 1) |
0 | 1 | MHz |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
---|---|---|---|---|---|---|
fSBW | Spy-Bi-Wire input frequency | 2.2 V, 3 V | 0 | 20 | MHz | |
tSBW,Low | Spy-Bi-Wire low clock pulse duration | 2.2 V, 3 V | 0.025 | 15 | µs | |
tSBW, En | Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge)(1) | 2.2 V, 3 V | 1 | µs | ||
tSBW,Rst | Spy-Bi-Wire return to normal operation time | 15 | 100 | µs | ||
fTCK | TCK input frequency for 4-wire JTAG(2) | 2.2 V | 0 | 5 | MHz | |
3 V | 0 | 10 | ||||
Rinternal | Internal pulldown resistance on TEST | 2.2 V, 3 V | 45 | 60 | 80 | kΩ |