SLASEE4C January   2018  – December 2019 MSP430FR2512 , MSP430FR2522

PRODUCTION DATA.  

  1. 1Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. 2Revision History
  3. 3Device Comparison
    1. 3.1 Related Products
  4. 4Terminal Configuration and Functions
    1. 4.1 Pin Diagrams
    2. 4.2 Pin Attributes
    3. 4.3 Signal Descriptions
    4. 4.4 Pin Multiplexing
    5. 4.5 Buffer Types
    6. 4.6 Connection of Unused Pins
  5. 5Specifications
    1. 5.1       Absolute Maximum Ratings
    2. 5.2       ESD Ratings
    3. 5.3       Recommended Operating Conditions
    4. 5.4       Active Mode Supply Current Into VCC Excluding External Current
    5. 5.5       Active Mode Supply Current Per MHz
    6. 5.6       Low-Power Mode (LPM0) Supply Currents Into VCC Excluding External Current
    7. 5.7       Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current
    8. 5.8       Low-Power Mode (LPMx.5) Supply Currents (Into VCC) Excluding External Current
    9. 5.9       Typical Characteristics - Low-Power Mode Supply Currents
    10. Table 5-1 Typical Characteristics – Current Consumption Per Module
    11. 5.10      Thermal Resistance Characteristics
    12. 5.11      Timing and Switching Characteristics
      1. 5.11.1  Power Supply Sequencing
        1. Table 5-2 PMM, SVS and BOR
      2. 5.11.2  Reset Timing
        1. Table 5-3 Wake-up Times From Low-Power Modes and Reset
      3. 5.11.3  Clock Specifications
        1. Table 5-4 XT1 Crystal Oscillator (Low Frequency)
        2. Table 5-5 DCO FLL, Frequency
        3. Table 5-6 DCO Frequency
        4. Table 5-7 REFO
        5. Table 5-8 Internal Very-Low-Power Low-Frequency Oscillator (VLO)
        6. Table 5-9 Module Oscillator (MODOSC)
      4. 5.11.4  Digital I/Os
        1. Table 5-10 Digital Inputs
        2. Table 5-11 Digital Outputs
        3. 5.11.4.1   Typical Characteristics – Outputs at 3 V and 2 V
      5. 5.11.5  VREF+ Built-in Reference
        1. Table 5-12 VREF+
      6. 5.11.6  Timer_A
        1. Table 5-13 Timer_A
      7. 5.11.7  eUSCI
        1. Table 5-14 eUSCI (UART Mode) Clock Frequency
        2. Table 5-15 eUSCI (UART Mode)
        3. Table 5-16 eUSCI (SPI Master Mode) Clock Frequency
        4. Table 5-17 eUSCI (SPI Master Mode)
        5. Table 5-18 eUSCI (SPI Slave Mode)
        6. Table 5-19 eUSCI (I2C Mode)
      8. 5.11.8  ADC
        1. Table 5-20 ADC, Power Supply and Input Range Conditions
        2. Table 5-21 ADC, 10-Bit Timing Parameters
        3. Table 5-22 ADC, 10-Bit Linearity Parameters
      9. 5.11.9  CapTIvate
        1. Table 5-23 CapTIvate Electrical Characteristics
        2. Table 5-24 CapTIvate Signal-to-Noise Ratio Characteristics
      10. 5.11.10 FRAM
        1. Table 5-25 FRAM
      11. 5.11.11 Debug and Emulation
        1. Table 5-26 JTAG, Spy-Bi-Wire Interface
        2. Table 5-27 JTAG, 4-Wire Interface
  6. 6Detailed Description
    1. 6.1  Overview
    2. 6.2  CPU
    3. 6.3  Operating Modes
    4. 6.4  Interrupt Vector Addresses
    5. 6.5  Bootloader (BSL)
    6. 6.6  JTAG Standard Interface
    7. 6.7  Spy-Bi-Wire Interface (SBW)
    8. 6.8  FRAM
    9. 6.9  Memory Protection
    10. 6.10 Peripherals
      1. 6.10.1  Power-Management Module (PMM)
      2. 6.10.2  Clock System (CS) and Clock Distribution
      3. 6.10.3  General-Purpose Input/Output Port (I/O)
      4. 6.10.4  Watchdog Timer (WDT)
      5. 6.10.5  System (SYS) Module
      6. 6.10.6  Cyclic Redundancy Check (CRC)
      7. 6.10.7  Enhanced Universal Serial Communication Interface (eUSCI_A0, eUSCI_B0)
      8. 6.10.8  Timers (Timer0_A3, Timer1_A3)
      9. 6.10.9  Hardware Multiplier (MPY)
      10. 6.10.10 Backup Memory (BAKMEM)
      11. 6.10.11 Real-Time Clock (RTC)
      12. 6.10.12 10-Bit Analog-to-Digital Converter (ADC)
      13. 6.10.13 CapTIvate Technology
      14. 6.10.14 Embedded Emulation Module (EEM)
    11. 6.11 Input/Output Diagrams
      1. 6.11.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger
      2. 6.11.2 Port P2 (P2.0 to P2.6) Input/Output With Schmitt Trigger
    12. 6.12 Device Descriptors
    13. 6.13 Memory
      1. 6.13.1 Memory Organization
      2. 6.13.2 Peripheral File Map
    14. 6.14 Identification
      1. 6.14.1 Revision Identification
      2. 6.14.2 Device Identification
      3. 6.14.3 JTAG Identification
  7. 7Applications, Implementation, and Layout
    1. 7.1 Device Connection and Layout Fundamentals
      1. 7.1.1 Power Supply Decoupling and Bulk Capacitors
      2. 7.1.2 External Oscillator
      3. 7.1.3 JTAG
      4. 7.1.4 Reset
      5. 7.1.5 Unused Pins
      6. 7.1.6 General Layout Recommendations
      7. 7.1.7 Do's and Don'ts
    2. 7.2 Peripheral- and Interface-Specific Design Information
      1. 7.2.1 ADC Peripheral
        1. 7.2.1.1 Partial Schematic
        2. 7.2.1.2 Design Requirements
        3. 7.2.1.3 Layout Guidelines
      2. 7.2.2 CapTIvate Peripheral
        1. 7.2.2.1 Device Connection and Layout Fundamentals
        2. 7.2.2.2 Measurements
          1. 7.2.2.2.1 SNR
          2. 7.2.2.2.2 Sensitivity
          3. 7.2.2.2.3 Power
    3. 7.3 CapTIvate Technology Evaluation
  8. 8Device and Documentation Support
    1. 8.1  Getting Started and Next Steps
    2. 8.2  Device Nomenclature
    3. 8.3  Tools and Software
    4. 8.4  Documentation Support
    5. 8.5  Related Links
    6. 8.6  Community Resources
    7. 8.7  Trademarks
    8. 8.8  Electrostatic Discharge Caution
    9. 8.9  Export Control Notice
    10. 8.10 Glossary
  9. 9Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • PW|16
  • RHL|20
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER VCC –40°C 25°C 85°C UNIT
TYP MAX TYP MAX TYP MAX
ILPM3,XT1 Low-power mode 3, 12.5-pF crystal, includes SVS(2)(3)(4) 3 V 0.96 1.11 2.75 6.2 µA
2 V 0.93 1.08 2.78
ILPM3,VLO Low-power mode 3, VLO, excludes SVS(5) 3 V 0.77 0.92 2.66 6.0 µA
2 V 0.75 0.90 2.60
ILPM3, RTC Low-power mode 3, RTC, excludes SVS(9) 3 V 0.90 1.05 2.77 µA
ILPM3, CapTIvate, 1 proximity, wake on touch Low-power mode 3, CapTIvate , excludes SVS(10) 3 V 4.7 µA
ILPM3, CapTIvate, 1 button, wake on touch Low-power mode 3, CapTIvate , excludes SVS(11) 3 V 3.0 µA
ILPM3, CapTIvate, 2 buttons, wake on touch Low-power mode 3, CapTIvate, excludes SVS(12) 3 V 3.2 µA
ILPM3, CapTIvate, 8 buttons Low-power mode 3, CapTIvate, excludes SVS(13) 3 V 17 µA
ILPM3, CapTIvate, 16 buttons Low-power mode 3, CapTIvate, excludes SVS(14) 3 V 38 µA
ILPM4, SVS Low-power mode 4, includes SVS(6) 3 V 0.51 0.64 2.30 µA
2 V 0.49 0.61 2.25
ILPM4 Low-power mode 4, excludes SVS(6) 3 V 0.35 0.48 2.13 µA
2 V 0.34 0.46 2.10
ILPM4,VLO Low-power mode 4, RTC is soured from VLO, excludes SVS(7) 3 V 0.43 0.56 2.21 µA
2 V 0.42 0.55 2.19
ILPM4,XT1 Low-power mode 4, RTC is soured from XT1, excludes SVS(8) 3 V 0.80 0.96 2.68 µA
2 V 0.79 0.94 2.64
ILPM4, CapTIvate, 1 proximity, wake on touch Low-power mode 4, CapTIvate , excludes SVS(15) 3 V 4.5 µA
ILPM4, CapTIvate, 1 button, wake on touch Low-power mode 4, CapTIvate , excludes SVS(16) 3 V 2.7 µA
ILPM4, CapTIvate, 2 buttons, wake on touch Low-power mode 4, CapTIvate, excludes SVS(17) 3  V 2.9 µA
ILPM4, CapTIvate, 8 buttons Low-power mode 4, CapTIvate, excludes SVS(18) 3 V 18 µA
ILPM4, CapTIvate, 16 buttons Low-power mode 4, CapTIvate, excludes SVS(19) 3 V 39 µA
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
Not applicable for MCUs with HF crystal oscillator only.
Characterized with a Seiko Crystal SC-32S crystal with a load capacitance chosen to closely match the required load.
Low-power mode 3, 12.5-pF crystal, includes SVS test conditions:
Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1).
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3),
fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz
Low-power mode 3, VLO, excludes SVS test conditions:
Current for watchdog timer clocked by VLO included. RTC disabled. Current for brownout included. SVS disabled (SVSHE = 0).
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3)
fXT1 = 32768 Hz, fACLK = fMCLK = fSMCLK = 0 MHz
Low-power mode 4, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), CPU and all clocks are disabled, WDT and RTC disabled
Low-power mode 4, VLO, excludes SVS test conditions:
Current for RTC clocked by VLO included. Current for brownout included. SVS disabled (SVSHE = 0).
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4)
fXT1 = 0 Hz, fMCLK = fSMCLK = 0 MHz
Low-power mode 4, XT1, excludes SVS test conditions:
Current for RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE = 0).
CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4)
fXT1 = 32768 Hz, fMCLK = fSMCLK = 0 MHz
RTC periodically wakes up every second with external 32768-Hz input as source.
CapTIvate technology works in LPM3 with one proximity sensor for wake on touch. CapTIvate BSWP demonstration board with 1.5-mm overlay. Current for brownout included. SVS disabled (SVSHE = 0).
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 800
CapTIvate technology works in LPM3 with one button, wake on touch.CapTIvate BSWP demonstration board with 1.5-mm overlay, Current for brownout included. SVS disabled (SVSHE = 0).
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250
CapTIvate technology works in LPM3 with two self-capacitance buttons, wake on touch. CapTIvate BSWP demonstration board with 1.5-mm overlay. Current for brownout included. SVS disabled (SVSHE = 0).
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250
CapTIvate technology works in LPM3 with 8 self-capacitance buttons. The CPU enters active mode in between time cycles to configure the conversions and read the results. CapTIvate BSWP demonstration board with 1.5-mm overlay. Current for brownout included. SVS disabled (SVSHE = 0).
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250
CapTIvate technology works in LPM3 with 16 mutual-capacitance buttons. The CPU enters active mode in between time cycles to configure the conversions and read the results. CapTIvate phone demonstration board with 1.5-mm overlay. Current for brownout included. SVS disabled (SVSHE = 0).
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250
CapTIvate technology works in LPM4 with one proximity sensor for wake on touch. CapTIvate BSWP demonstration board with 1.5-mm overlay. Current for brownout included. SVS disabled (SVSHE = 0). The VLO (10 kHz) sources the CapTIvate timer, no external crystal.
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 800
CapTIvate technology works in LPM4 with one button, wake on touch. CapTIvate BSWP demonstration board with 1.5-mm overlay, Current for brownout included. SVS disabled (SVSHE = 0). The VLO (10 kHz) sources the CapTIvate timer, no external crystal.
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250
CapTIvate technology works in LPM4 with two self-capacitance buttons, wake on touch. CapTIvate BSWP demonstration board with 1.5-mm overlay. Current for brownout included. SVS disabled (SVSHE = 0). VLO (10 kHz) sources the CapTIvate timer, no external crystal.
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250
CapTIvate technology works in LPM4 with 8 self-capacitance buttons. The CPU enters active mode in between time cycles to configure the conversions and read the results. CapTIvate BSWP demonstration board with 1.5-mm overlay. Current for brownout included. SVS disabled (SVSHE = 0). The VLO (10 kHz) sources the CapTIvate timer, no external crystal.
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250
CapTIvate technology works in LPM4 with 16 mutual-capacitance buttons. The CPU enters active mode in between time cycles to configure the conversions and read the results. CapTIvate phone demonstration board with 1.5-mm overlay. Current for brownout included. SVS disabled (SVSHE = 0). The VLO (10 kHz) sources the CapTIvate timer, no external crystal.
fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250