SLASE54D March 2016 – January 2021 MSP430FR5962 , MSP430FR5964 , MSP430FR5992 , MSP430FR5994 , MSP430FR59941
PRODUCTION DATA
The following documents describe the MSP430FR599x and MSP430FR596x MCUs. Copies of these documents are available on the Internet at www.ti.com.
Receiving notification of document updates
To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com (for links to the product folders, see Section 11.5). In the upper right corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document.
Errata
MSP430FR5994 Device Erratasheet
Describes the known exceptions to the functional specifications.
MSP430FR59941 Device Erratasheet
Describes the known exceptions to the functional specifications.
MSP430FR5992 Device Erratasheet
Describes the known exceptions to the functional specifications.
MSP430FR5964 Device Erratasheet
Describes the known exceptions to the functional specifications.
MSP430FR5962 Device Erratasheet
Describes the known exceptions to the functional specifications.
User's Guides
MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide
Detailed description of all modules and peripherals available in this device family.
MSP430 FRAM Device Bootloader (BSL) User's Guide
The bootloader (BSL) on MSP430 MCUs lets users communicate with embedded memory in the MSP430 MCU during the prototyping phase, final production, and in service. Both the programmable memory (FRAM) and the data memory (RAM) can be modified as required.
MSP430 Programming With the JTAG Interface
This document describes the functions that are required to erase, program, and verify the memory module of the MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition, it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG interface, which is also referred to as Spy-Bi-Wire (SBW).
MSP430 Hardware Tools User's Guide
This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the program development tool for the MSP430 ultra-low-power microcontroller. Both available interface types, the parallel port interface and the USB interface, are described.
Application Reports
MSP430 32-kHz Crystal Oscillators
Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout are given. The document also contains detailed information on the possible oscillator tests to ensure stable oscillator operation in mass production.
MSP430 System-Level ESD Considerations
System-level ESD has become increasingly demanding with silicon technology scaling towards lower voltages and the need for designing cost-effective and ultra-low-power components. This application report addresses three different ESD topics to help board designers and OEMs understand and design robust system-level designs: (1) Component-level ESD testing and system-level ESD testing; (2) General design guidelines for system-level ESD protection at different levels; (3) Introduction to System Efficient ESD Design (SEED).
MSP430™ FRAM Technology – How To and Best Practices
FRAM is a nonvolatile memory technology that behaves similar to SRAM while enabling a whole host of new applications, but also changing the way firmware should be designed. This application report outlines the how to and best practices of using FRAM technology in MSP430 MCUs from an embedded software development perspective. It discusses how to implement a memory layout according to application-specific code, constant, data space requirements, the use of FRAM to optimize application energy consumption, and the use of the Memory Protection Unit (MPU) to maximize application robustness by protecting the program code against unintended write accesses.