SLASEC9 April   2017 MSP430FR5989-EP

PRODUCTION DATA.  

  1. 1Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. 2Revision History
  3. 3Terminal Configuration and Functions
    1. 3.1 Pin Diagram
    2. 3.2 Signal Descriptions
    3. 3.3 Pin Multiplexing
    4. 3.4 Connection of Unused Pins
  4. 4 Specifications
    1. 4.1  Absolute Maximum Ratings
    2. 4.2  ESD Ratings
    3. 4.3  Recommended Operating Conditions
    4. 4.4  Active Mode Supply Current Into VCC Excluding External Current
    5. 4.5  Typical Characteristics, Active Mode Supply Currents
    6. 4.6  Low-Power Mode (LPM0, LPM1) Supply Currents Into VCC Excluding External Current
    7. 4.7  Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current
    8. 4.8  Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current
    9. 4.9  Low-Power Mode LPMx.5 Supply Currents (Into VCC) Excluding External Current
    10. 4.10 Typical Characteristics, Low-Power Mode Supply Currents
    11. 4.11 Typical Characteristics, Current Consumption per Module
    12. 4.12 Thermal Resistance Characteristics
    13. 4.13 Timing and Switching Characteristics
      1. 4.13.1 Power Supply Sequencing
      2. 4.13.2 Reset Timing
      3. 4.13.3 Clock Specifications
      4. 4.13.4 Wake-up Characteristics
        1. 4.13.4.1 Typical Characteristics, Average LPM Currents vs Wake-up Frequency
      5. 4.13.5 Peripherals
        1. 4.13.5.1 Digital I/Os
          1. 4.13.5.1.1 Typical Characteristics, Digital Outputs at 3.0 V and 2.2 V
          2. 4.13.5.1.2 Typical Characteristics, Pin-Oscillator Frequency
        2. 4.13.5.2 Timer_A and Timer_B
        3. 4.13.5.3 eUSCI
        4. 4.13.5.4 LCD Controller
        5. 4.13.5.5 ADC
        6. 4.13.5.6 Reference
        7. 4.13.5.7 Comparator
        8. 4.13.5.8 Scan Interface
        9. 4.13.5.9 FRAM Controller
      6. 4.13.6 Emulation and Debug
  5. 5Detailed Description
    1. 5.1  Overview
    2. 5.2  CPU
    3. 5.3  Operating Modes
      1. 5.3.1 Peripherals in Low-Power Modes
        1. 5.3.1.1 Idle Currents of Peripherals in LPM3 and LPM4
    4. 5.4  Interrupt Vector Table and Signatures
    5. 5.5  Bootloader (BSL)
    6. 5.6  JTAG Operation
      1. 5.6.1 JTAG Standard Interface
      2. 5.6.2 Spy-Bi-Wire Interface
    7. 5.7  FRAM
    8. 5.8  RAM
    9. 5.9  Tiny RAM
    10. 5.10 Memory Protection Unit Including IP Encapsulation
    11. 5.11 Peripherals
      1. 5.11.1  Digital I/O
      2. 5.11.2  Oscillator and Clock System (CS)
      3. 5.11.3  Power-Management Module (PMM)
      4. 5.11.4  Hardware Multiplier (MPY)
      5. 5.11.5  Real-Time Clock (RTC_C)
      6. 5.11.6  Watchdog Timer (WDT_A)
      7. 5.11.7  System Module (SYS)
      8. 5.11.8  DMA Controller
      9. 5.11.9  Enhanced Universal Serial Communication Interface (eUSCI)
      10. 5.11.10 Extended Scan Interface (ESI)
      11. 5.11.11 Timer_A TA0, Timer_A TA1
      12. 5.11.12 Timer_A TA2
      13. 5.11.13 Timer_A TA3
      14. 5.11.14 Timer_B TB0
      15. 5.11.15 ADC12_B
      16. 5.11.16 Comparator_E
      17. 5.11.17 CRC16
      18. 5.11.18 CRC32
      19. 5.11.19 AES256 Accelerator
      20. 5.11.20 True Random Seed
      21. 5.11.21 Shared Reference (REF_A)
      22. 5.11.22 LCD_C
      23. 5.11.23 Embedded Emulation
        1. 5.11.23.1 Embedded Emulation Module (EEM)
        2. 5.11.23.2 EnergyTrace++™ Technology
      24. 5.11.24 Input/Output Diagrams
        1. 5.11.24.1  Digital I/O Functionality - Ports P1 to P10
        2. 5.11.24.2  Capacitive Touch Functionality Ports P1 to P10 and PJ
        3. 5.11.24.3  Port P1 (P1.0 to P1.3) Input/Output With Schmitt Trigger
        4. 5.11.24.4  Port P1 (P1.4 to P1.7) Input/Output With Schmitt Trigger
        5. 5.11.24.5  Port P2 (P2.0 to P2.3) Input/Output With Schmitt Trigger
        6. 5.11.24.6  Port P2 (P2.4 to P2.7) Input/Output With Schmitt Trigger
        7. 5.11.24.7  Port P3 (P3.0 to P3.7) Input/Output With Schmitt Trigger
        8. 5.11.24.8  Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger
        9. 5.11.24.9  Port P5 (P5.0 to P5.7) Input/Output With Schmitt Trigger
        10. 5.11.24.10 Port P6 (P6.0 to P6.6) Input/Output With Schmitt Trigger
        11. 5.11.24.11 Port P6 (P6.7) Input/Output With Schmitt Trigger
        12. 5.11.24.12 Port P7 (P7.0 to P7.7) Input/Output With Schmitt Trigger
        13. 5.11.24.13 Port P8 (P8.0 to P8.3) Input/Output With Schmitt Trigger
        14. 5.11.24.14 Port P8 (P8.4 to P8.7) Input/Output With Schmitt Trigger
        15. 5.11.24.15 Port P9 (P9.0 to P9.3) Input/Output With Schmitt Trigger
        16. 5.11.24.16 Port P9 (P9.4 to P9.7) Input/Output With Schmitt Trigger
        17. 5.11.24.17 Port P10 (P10.0 to P10.2) Input/Output With Schmitt Trigger
        18. 5.11.24.18 Port PJ (PJ.4 and PJ.5) Input/Output With Schmitt Trigger
        19. 5.11.24.19 Port PJ (PJ.6 and PJ.7) Input/Output With Schmitt Trigger
        20. 5.11.24.20 Port PJ (PJ.0 to PJ.3) JTAG Pins TDO, TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger
    12. 5.12 Device Descriptors (TLV)
    13. 5.13 Memory
      1. 5.13.1 Peripheral File Map
    14. 5.14 Identification
      1. 5.14.1 Revision Identification
      2. 5.14.2 Device Identification
      3. 5.14.3 JTAG Identification
  6. 6Applications, Implementation, and Layout
    1. 6.1 Device Connection and Layout Fundamentals
      1. 6.1.1 Power Supply Decoupling and Bulk Capacitors
      2. 6.1.2 External Oscillator
      3. 6.1.3 JTAG
      4. 6.1.4 Reset
      5. 6.1.5 Unused Pins
      6. 6.1.6 General Layout Recommendations
      7. 6.1.7 Do's and Don'ts
    2. 6.2 Peripheral- and Interface-Specific Design Information
      1. 6.2.1 ADC12_B Peripheral
        1. 6.2.1.1 Partial Schematic
        2. 6.2.1.2 Design Requirements
        3. 6.2.1.3 Detailed Design Procedure
        4. 6.2.1.4 Layout Guidelines
      2. 6.2.2 LCD_C Peripheral
        1. 6.2.2.1 Partial Schematic
        2. 6.2.2.2 Design Requirements
        3. 6.2.2.3 Detailed Design Procedure
        4. 6.2.2.4 Layout Guidelines
  7. 7Device and Documentation Support
    1. 7.1 Device and Development Tool Nomenclature
    2. 7.2 Tools and Software
    3. 7.3 Documentation Support
    4. 7.4 Community Resources
    5. 7.5 Trademarks
    6. 7.6 Electrostatic Discharge Caution
    7. 7.7 Export Control Notice
    8. 7.8 Glossary
  8. 8Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Device and Documentation Support

Device and Development Tool Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP430 MCU devices and support tools. Each MSP430 MCU commercial family member has one of three prefixes: MSP, PMS, or XMS. TI recommends two of three possible prefix designators for its support tools: MSP and MSPX. These prefixes represent evolutionary stages of product development from engineering prototypes (with XMS for devices and MSPX for tools) through fully qualified production devices and tools (with MSP for devices and MSP for tools).

Device development evolutionary flow:

XMS – Experimental device that is not necessarily representative of the final device's electrical specifications

PMS – Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification

MSP – Fully qualified production device

Support tool development evolutionary flow:

MSPX – Development-support product that has not yet completed TI internal qualification testing

MSP – Fully-qualified development-support product

XMS and PMS devices and MSPX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

MSP devices and MSP development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (XMS and PMS) have a greater failure rate than the standard production devices. TI recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PZ) and temperature range (for example, I). Figure 7-1 provides a legend for reading the complete device name for any family member.

MSP430FR5989-EP part_number_decoder_slas789.gif

NOTE:

This figure does not represent a complete list of the available features and options, and does not indicate that all of these features and options are available for a given device or family.
Figure 7-1 Device Nomenclature – Part Number Decoder

Tools and Software

Table 7-1 lists the debug features supported by the MSP430FR698x(1) and MSP430FR598x(1) microcontrollers. See the Code Composer Studio for MSP430 User's Guide for details on the available features.

Table 7-1 Hardware Features

MSP430 ARCHITECTURE 4-WIRE JTAG 2-WIRE JTAG BREAK- POINTS
(N)
RANGE BREAK- POINTS CLOCK CONTROL STATE SEQUENCER TRACE BUFFER LPMX.5 DEBUGGING SUPPORT EnergyTrace++ TECHNOLOGY
MSP430Xv2 Yes Yes 3 Yes Yes No No Yes Yes

EnergyTrace™ technology is supported with Code Composer Studio version 6.0 and newer. It requires specialized debugger circuitry, which is supported with the second-generation on-board eZ-FET flash emulation tool and second-generation stand-alone MSP-FET JTAG emulator. See Advanced Debugging Using the Enhanced Emulation Module (EEM) With Code Composer Studio Version 6 and MSP430™ Advanced Power Optimizations: ULP Advisor™ and EnergyTrace™ Technology for additional information.

Design Kits and Evaluation Modules

    MSP430FR6989 LaunchPad™ Development Kit The MSP-EXP430FR6989 LaunchPad Development Kit is an easy-to-use evaluation module (EVM) for the MSP40FR6989 microcontroller (MCU). It contains everything needed to start developing on the ultra-low-power MSP430FRx FRAM microcontroller platform, including onboard emulation for programming, debugging, and energy measurements.

Software

    FRAM Embedded Software Utilities for MSP Ultra-Low-Power Microcontrollers The TI FRAM Utilities software is designed to grow as a collection of embedded software utilities that leverage the ultra-low-power and virtually unlimited write endurance of FRAM. The utilities are available for MSP430FRxx FRAM microcontrollers and provide example code to help start application development.
    MSP430 Touch Pro GUI The MSP430 Touch Pro Tool is a PC-based tool that can be used to verify capacitive touch button, slider,and wheel designs. The tool receives and visualizes captouch sensor data to help the user quickly and easily evaluate, diagnose, and tune button, slider, and wheel designs.
    MSP430 Touch Power Designer GUI The MSP430 Capacitive Touch Power Designer enables the calculation of the estimated average current draw for a given MSP430 capacitive touch system. By entering system parameters such as operating voltage, frequency, number of buttons, and button gate time, the user can have a power estimate for a given capacitive touch configuration on a given device family in minutes.
    Digital Signal Processing (DSP) Library for MSP Microcontrollers The Digital Signal Processing library is a set of highly optimized functions to perform many common signal processing operations on fixed-point numbers for MSP430 and MSP432 microcontrollers. This function set is typically used for applications where processing-intensive transforms are done in real-time for minimal energy and with very high accuracy. This optimal use of the MSP intrinsic hardware for fixed-point math allows for significant performance gains.
    MSP Driver Library The abstracted API of MSP Driver Library provides easy-to-use function calls that free you from directly manipulating the bits and bytes of the MSP430 hardware. Thorough documentation is delivered through a helpful API Guide, which includes details on each function call and the recognized parameters. Developers can use Driver Library functions to write complete projects with minimal overhead.
    MSP EnergyTrace Technology EnergyTrace technology for MSP430 microcontrollers is an energy-based code analysis tool that measures and displays the energy profile of the application and helps to optimize it for ultra-low-power consumption.
    ULP (Ultra-Low Power) Advisor ULP Advisor™ software is a tool for guiding developers to write more efficient code to fully use the unique ultra-low-power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to help minimize the energy consumption of your application. At build time, ULP Advisor provides notifications and remarks to highlight areas of your code that can be further optimized for lower power.
    IEC60730 Software Package The IEC60730 MSP430 software package was developed to help customers comply with IEC 60730-1:2010 (Automatic Electrical Controls for Household and Similar Use – Part 1: General Requirements) for up to Class B products, which includes home appliances, arc detectors, power converters, power tools, e-bikes, and many others. The IEC60730 MSP430 software package can be embedded in customer applications running on MSP430s to help simplify the customer’s certification efforts of functional safety-compliant consumer devices to IEC 60730-1:2010 Class B.
    Fixed Point Math Library for MSP The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and MSP432 devices. These routines are typically used in computationally intensive real-time applications where optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably lower than equivalent code written using floating-point math.
    Floating Point Math Library for MSP430 Continuing to innovate in the low-power and low-cost microcontroller space, TI provides MSPMATHLIB. Leveraging the intelligent peripherals of our devices, this floating-point math library of scalar functions is up to 26 times faster than the standard MSP430 math functions. Mathlib is easy to integrate into your designs. This library is free and is integrated in both Code Composer Studio IDE and IAR Embedded Workbench IDE.

Development Tools

    Code Composer Studio™ Integrated Development Environment for MSP Microcontrollers Code Composer Studio (CCS) integrated development environment (IDE) supports all MSP microcontroller devices. CCS comprises a suite of embedded software utilities used to develop and debug embedded applications. CCS includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features.
    MSPWare Software MSPWare software is a collection of code examples, data sheets, and other design resources for all MSP devices delivered in a convenient package. In addition to providing a complete collection of existing MSP design resources, MSPWare software also includes a high-level API called MSP Driver Library. This library makes it easy to program MSP hardware. MSPWare software is available as a component of CCS or as a stand-alone package.
    Command-Line Programmer MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary files (.txt or .hex) directly to the MSP microcontroller without an IDE.
    MSP MCU Programmer and Debugger The MSP-FET is a powerful emulation development tool – often called a debug probe – which lets users quickly begin application development on MSP low-power MCUs. Creating MCU software usually requires downloading the resulting binary program to the MSP device for validation and debugging.
    MSP-GANG Production Programmer The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight identical MSP430 or MSP432 flash or FRAM devices at the same time. The MSP Gang Programmer connects to a host PC using a standard RS-232 or USB connection and provides flexible programming options that let the user fully customize the process.

Documentation Support

The following documents describe the MSP430FR698x(1) and MSP430FR598x(1) MCUs. Copies of these documents are available on the Internet at www.ti.com.

Receiving Notification of Document Updates

To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com. In the upper right corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document.

Errata

User's Guides

    Code Composer Studio v6.1 for MSP430 User's Guide This manual describes the use of TI Code Composer Studio IDE v6.1 (CCS v6.1) with the MSP430 ultra-low-power microcontrollers. This document applies only for the Windows version of the Code Composer Studio IDE. The Linux version is similar and, therefore, is not described separately.
    MSP430 Programming With the JTAG Interface This document describes the functions that are required to erase, program, and verify the memory module of the MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition, it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG interface, which is also referred to as Spy-Bi-Wire (SBW).
    MSP430 Hardware Tools User's Guide This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the program development tool for the MSP430 ultra-low-power microcontroller. Both available interface types, the parallel port interface and the USB interface, are described.

Application Reports

    MSP430 FRAM Technology – How To and Best Practices FRAM is a nonvolatile memory technology that behaves similar to SRAM while enabling a whole host of new applications, but also changing the way firmware should be designed. This application report outlines the how to and best practices of using FRAM technology in MSP430 from an embedded software development perspective. It discusses how to implement a memory layout according to application-specific code, constant, data space requirements, and the use of FRAM to optimize application energy consumption.
    MSP430 32-kHz Crystal Oscillators Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout are given. The document also contains detailed information on the possible oscillator tests to ensure stable oscillator operation in mass production.
    MSP430 System-Level ESD Considerations System-Level ESD has become increasingly demanding with silicon technology scaling towards lower voltages and the need for designing cost-effective and ultra-low-power components. This application report addresses three different ESD topics to help board designers and OEMs understand and design robust system-level designs.

Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Community
TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

TI Embedded Processors Wiki
Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices.

Trademarks

EnergyTrace++, MSP430, EnergyTrace, LaunchPad, ULP Advisor, Code Composer Studio, E2E are trademarks of Texas Instruments.

Microsoft is a registered trademark of Microsoft Corporation.

Electrostatic Discharge Caution

esds-image

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Export Control Notice

Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws.

Glossary

SLYZ022TI Glossary.

This glossary lists and explains terms, acronyms and definitions.