SBOS855E January   2017  – December 2022 OPA1677 , OPA1678 , OPA1679

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information: OPA1677
    5. 6.5 Thermal Information: OPA1678
    6. 6.6 Thermal Information: OPA1679
    7. 6.7 Electrical Characteristics
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Phase Reversal Protection
      2. 7.3.2 Electrical Overstress
      3. 7.3.3 EMI Rejection Ratio (EMIRR)
        1. 7.3.3.1 EMIRR IN+ Test Configuration
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operating Voltage
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Capacitive Loads
    2. 8.2 Typical Applications
      1. 8.2.1 Phantom-Powered Preamplifier for Piezo Contact Microphones
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Power Supply
          2. 8.2.1.2.2 Input Network
          3. 8.2.1.2.3 Gain
          4. 8.2.1.2.4 Output Network
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Phono Preamplifier for Moving Magnet Cartridges
      3. 8.2.3 Single-Supply Electret Microphone Preamplifier
      4. 8.2.4 Composite Headphone Amplifier
      5. 8.2.5 Differential Line Receiver With AC-Coupled Outputs
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Power Dissipation
      2. 8.4.2 Layout Example
  9. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
        1. 9.1.1.1 PSpice® for TI
        2. 9.1.1.2 TINA-TI™ Simulation Software (Free Download)
        3. 9.1.1.3 DIP-Adapter-EVM
        4. 9.1.1.4 DIYAMP-EVM
        5. 9.1.1.5 TI Reference Designs
        6. 9.1.1.6 Filter Design Tool
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The single-channel OPA1677, dual-channel OPA1678, and quad-channel OPA1679 (OPA167x) op amps offer higher system-level performance over legacy op amps commonly used in audio circuitry.

The OPA167x amplifiers achieve a low 4.5-nV/√Hz noise density and low distortion of 0.0001% at 1 kHz, which improves audio signal fidelity. These devices also offer rail-to-rail output swing to within 800 mV with a 2-kΩ load, which increases headroom and maximizes dynamic range.

To accommodate the power-supply constraints of many types of audio products, the OPA167x operate over a very-wide supply range of ±2.25 V to ±18 V (or 4.5 V to 36 V) on only 2 mA of supply current. These op amps are unity-gain stable and have excellent dynamic behavior over a wide range of load conditions, allowing the OPA167x to be used in many audio circuits.

The OPA167x amplifiers use completely independent internal circuitry for lowest crosstalk and freedom from interactions between channels, even when overdriven or overloaded.

Device Information
PART NUMBER CHANNELS PACKAGE(1)
OPA1677 Single SOIC (8)
SOT-23 (5)
OPA1678 Dual SOIC (8)
VSSOP (8)
SON (8)
OPA1679 Quad SOIC (14)
TSSOP (14)
QFN (16)
For all available packages, see the package option addendum at the end of the data sheet.

 

 

Simplified Internal Schematic
GUID-60139F4F-FEB3-4810-8C0D-9B30FDAA312B-low.pngTHD+N vs Frequency (2-kΩ Load)