The OPAx192 family (OPA192, OPA2192, and OPA4192) is a new generation of 36-V, e-trim operational amplifiers.
These devices offer outstanding dc precision and ac performance, including rail-to-rail input/output, low offset (±5 µV, typ), low offset drift (±0.2 µV/°C, typ), and 10-MHz bandwidth.
Unique features such as differential input-voltage range to the supply rail, high output current (±65 mA), high capacitive load drive of up to 1 nF, and high slew rate (20 V/µs) make the OPA192 a robust, high-performance operational amplifier for high-voltage industrial applications.
The OPA192 family of op amps is available in standard packages and is specified from –40°C to +125°C.
Changes from D Revision (September 2015) to E Revision
Changes from C Revision (March 2015) to D Revision
Changes from B Revision (March 2014) to C Revision
Changes from A Revision (January 2014) to B Revision
Changes from * Revision (December 2013) to A Revision
PIN | I/O | DESCRIPTION | ||
---|---|---|---|---|
NAME | OPA192 | |||
D (SOIC), DGK (VSSOP) |
DBV (SOT) | |||
+IN | 3 | 3 | I | Noninverting input |
–IN | 2 | 4 | I | Inverting input |
NC | 1, 5, 8 | — | — | No internal connection (can be left floating) |
OUT | 6 | 1 | O | Output |
V+ | 7 | 5 | — | Positive (highest) power supply |
V– | 4 | 2 | — | Negative (lowest) power supply |
PIN | I/O | DESCRIPTION | ||
---|---|---|---|---|
NAME | OPA2192 | OPA4192 | ||
D (SOIC), DGK (VSSOP) |
D (SOIC), PW (TSSOP) |
|||
+IN A | 3 | 3 | I | Noninverting input, channel A |
+IN B | 5 | 5 | I | Noninverting input, channel B |
+IN C | — | 10 | I | Noninverting input, channel C |
+IN D | — | 12 | I | Noninverting input, channel D |
–IN A | 2 | 2 | I | Inverting input, channel A |
–IN B | 6 | 6 | I | Inverting input, channel B |
–IN C | — | 9 | I | Inverting input,,channel C |
–IN D | — | 13 | I | Inverting input, channel D |
OUT A | 1 | 1 | O | Output, channel A |
OUT B | 7 | 7 | O | Output, channel B |
OUT C | — | 8 | O | Output, channel C |
OUT D | — | 14 | O | Output, channel D |
V+ | 8 | 4 | — | Positive (highest) power supply |
V– | 4 | 11 | — | Negative (lowest) power supply |
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
Supply voltage, VS = (V+) – (V–) | ±20 (40, single supply) |
V | |||
Signal input pins | Voltage | Common-mode | (V–) – 0.5 | (V+) + 0.5 | V |
Differential | (V+) – (V–) + 0.2 | ||||
Current | ±10 | mA | |||
Output short circuit(2) | Continuous | ||||
Temperature | Operating range | –55 | 150 | °C | |
Junction | 150 | ||||
Storage, Tstg | –65 | 150 |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±4000 | V |
OPA192 | ||||
V(ESD) | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±1000 | V |
OPA2192 | ||||
V(ESD) | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±750 | V |
OPA4192 | ||||
V(ESD) | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±500 | V |
MIN | NOM | MAX | UNIT | ||
---|---|---|---|---|---|
Supply voltage, VS = (V+) – (V–) | 4.5 (±2.25) | 36 (±18) | V | ||
Specified temperature | –40 | +125 | °C |
THERMAL METRIC(1) | OPA192 | UNIT | |||
---|---|---|---|---|---|
D (SOIC) | DBV (SOT) | DGK (VSSOP) | |||
8 PINS | 5 PINS | 8 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 115.8 | 158.8 | 180.4 | °C/W |
RθJC(top) | Junction-to-case(top) thermal resistance | 60.1 | 60.7 | 67.9 | °C/W |
RθJB | Junction-to-board thermal resistance | 56.4 | 44.8 | 102.1 | °C/W |
ψJT | Junction-to-top characterization parameter | 12.8 | 1.6 | 10.4 | °C/W |
ψJB | Junction-to-board characterization parameter | 55.9 | 4.2 | 100.3 | °C/W |
RθJC(bot) | Junction-to-case(bottom) thermal resistance | N/A | N/A | N/A | °C/W |
THERMAL METRIC(1) | OPA2192 | UNIT | ||
---|---|---|---|---|
D (SOIC) | DGK (VSSOP) | |||
8 PINS | 8 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 107.9 | 158 | °C/W |
RθJC(top) | Junction-to-case(top) thermal resistance | 53.9 | 48.6 | °C/W |
RθJB | Junction-to-board thermal resistance | 48.9 | 78.7 | °C/W |
ψJT | Junction-to-top characterization parameter | 6.6 | 3.9 | °C/W |
ψJB | Junction-to-board characterization parameter | 48.3 | 77.3 | °C/W |
RθJC(bot) | Junction-to-case(bottom) thermal resistance | N/A | N/A | °C/W |
THERMAL METRIC(1) | OPA4192 | UNIT | ||
---|---|---|---|---|
D (SOIC) | PW (TSSOP) | |||
14 PINS | 14 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 86.4 | 92.6 | °C/W |
RθJC(top) | Junction-to-case(top) thermal resistance | 46.3 | 27.5 | °C/W |
RθJB | Junction-to-board thermal resistance | 41.0 | 33.6 | °C/W |
ψJT | Junction-to-top characterization parameter | 11.3 | 1.9 | °C/W |
ψJB | Junction-to-board characterization parameter | 40.7 | 33.1 | °C/W |
RθJC(bot) | Junction-to-case(bottom) thermal resistance | N/A | N/A | °C/W |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
OFFSET VOLTAGE | |||||||
VOS | Input offset voltage | ±5 | ±25 | µV | |||
TA = 0°C to 85°C | ±8 | ±50 | |||||
TA = –40°C to +125°C | ±10 | ±75 | |||||
VCM = (V+) – 1.5 V | ±10 | ±40 | |||||
TA = 0°C to 85°C | ±25 | ±150 | |||||
TA = –40°C to +125°C | ±50 | ±250 | |||||
dVOS/dT | Input offset voltage drift | D packages only | TA = 0°C to 85°C | ±0.1 | ±0.5 | µV/°C | |
TA = –40°C to +125°C | ±0.15 | ±0.8 | |||||
DBV, DGK, and PW packages only | TA = 0°C to 85°C | ±0.1 | ±0.8 | ||||
TA = –40°C to +125°C | ±0.2 | ±1.0 | |||||
PSRR | Power-supply rejection ratio | TA = –40°C to +125°C | ±0.3 | ±1.0 | µV/V | ||
INPUT BIAS CURRENT | |||||||
IB | Input bias current | ±5 | ±20 | pA | |||
TA = –40°C to +125°C | ±5 | nA | |||||
IOS | Input offset current | ±2 | ±20 | pA | |||
TA = –40°C to +125°C | ±2 | nA | |||||
NOISE | |||||||
En | Input voltage noise | (V–) – 0.1 V < VCM < (V+) – 3 V | f = 0.1 Hz to 10 Hz | 1.30 | µVPP | ||
(V+) – 1.5 V < VCM < (V+) + 0.1 V | f = 0.1 Hz to 10 Hz | 4 | |||||
en | Input voltage noise density | (V–) – 0.1 V < VCM < (V+) – 3 V | f = 100 Hz | 10.5 | nV/√Hz | ||
f = 1 kHz | 5.5 | ||||||
(V+) – 1.5 V < VCM < (V+) + 0.1 V | f = 100 Hz | 32 | |||||
f = 1 kHz | 12.5 | ||||||
NOISE (continued) | |||||||
in | Input current noise density | f = 1 kHz | 1.5 | fA/√Hz | |||
INPUT VOLTAGE | |||||||
VCM | Common-mode voltage range | (V–) – 0.1 | (V+) + 0.1 | V | |||
CMRR | Common-mode rejection ratio | (V–) – 0.1 V < VCM < (V+) – 3 V | 120 | 140 | dB | ||
TA = –40°C to +125°C | 114 | 126 | |||||
(V+) – 1.5 V < VCM < (V+) | 100 | 120 | |||||
TA = –40°C to +125°C | 86 | 100 | |||||
(V+) – 3 V < VCM < (V+) – 1.5 V | See Typical Characteristics | ||||||
INPUT IMPEDANCE | |||||||
ZID | Differential | 100 || 1.6 | MΩ || pF | ||||
ZIC | Common-mode | 1 || 6.4 | 1013Ω || pF | ||||
OPEN-LOOP GAIN | |||||||
AOL | Open-loop voltage gain | (V–) + 0.6 V < VO < (V+) – 0.6 V, RLOAD = 2 kΩ | 120 | 134 | dB | ||
TA = –40°C to +125°C | 114 | 126 | |||||
(V–) + 0.3 V < VO < (V+) – 0.3 V, RLOAD = 10 kΩ | 126 | 140 | |||||
TA = –40°C to +125°C | 120 | 134 | |||||
FREQUENCY RESPONSE | |||||||
GBW | Unity gain bandwidth | 10 | MHz | ||||
SR | Slew rate | G = 1, 10-V step | 20 | V/µs | |||
ts | Settling time | To 0.01% | V S = ±18 V, G = 1, 10-V step | 1.4 | µs | ||
V S = ±18 V, G = 1, 5-V step | 0.9 | ||||||
To 0.001% | V S = ±18 V, G = 1, 10-V step | 2.1 | |||||
V S = ±18 V, G = 1, 5-V step | 1.8 | ||||||
tOR | Overload recovery time | VIN × G = VS | 200 | ns | |||
THD+N | Total harmonic distortion + noise | G = 1, f = 1 kHz, VO = 3.5 VRMS | 0.00008% | ||||
Crosstalk | OPA2192 and OPA4192, at dc | 150 | dB | ||||
OPA2192 and OPA4192, f = 100 kHz | 130 | ||||||
OUTPUT | |||||||
VO | Voltage output swing from rail | Positive rail | No load | 5 | 15 | mV | |
RLOAD = 10 kΩ | 95 | 110 | |||||
RLOAD = 2 kΩ | 430 | 500 | |||||
Negative rail | No load | 5 | 15 | ||||
RLOAD = 10 kΩ | 95 | 110 | |||||
RLOAD = 2 kΩ | 430 | 500 | |||||
ISC | Short-circuit current | ±65 | mA | ||||
CLOAD | Capacitive load drive | See Typical Characteristics | |||||
ZO | Open-loop output impedance | f = 1 MHz, IO = 0 A, see Figure 31 | 375 | Ω | |||
POWER SUPPLY | |||||||
IQ | Quiescent current per amplifier | IO = 0 A | 1 | 1.2 | mA | ||
TA = –40°C to +125°C, IO = 0 A | 1.5 | ||||||
TEMPERATURE | |||||||
Thermal protection(1) | 140 | °C |
PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
---|---|---|---|---|---|---|---|
OFFSET VOLTAGE | |||||||
VOS | Input offset voltage | VCM = (V+) – 3 V | ±5 | ±25 | µV | ||
TA = 0°C to 85°C | ±8 | ±50 | |||||
TA = –40°C to +125°C | ±10 | ±75 | |||||
(V+) – 3.5 V < VCM < (V+) – 1.5 V | See Common-Mode Voltage Range section | ||||||
VCM = (V+) – 1.5 V | ±10 | ±40 | µV | ||||
TA = 0°C to 85°C | ±25 | ±150 | |||||
TA = –40°C to +125°C | ±50 | ±250 | |||||
dVOS/dT | Input offset voltage drift | VCM = (V+) – 3 V, D packages only |
TA = 0°C to 85°C | ±0.1 | ±0.5 | µV/°C | |
TA = –40°C to +125°C | ±0.15 | ±0.8 | |||||
VCM = (V+) – 3 V, DBV, DGK, and PW packages only |
TA = 0°C to 85°C | ±0.1 | ±0.8 | ||||
TA = –40°C to +125°C | ±0.2 | ±1.1 | |||||
VCM = (V+) – 1.5 V, TA = –40°C to +125°C | ±0.5 | ±3 | |||||
PSRR | Power-supply rejection ratio | TA = –40°C to +125°C, VCM = VS / 2 – 0.75 V | ±1 | µV/V | |||
INPUT BIAS CURRENT | |||||||
IB | Input bias current | ±5 | ±20 | pA | |||
TA = –40°C to +125°C | ±5 | nA | |||||
IOS | Input offset current | ±2 | ±20 | pA | |||
TA = –40°C to +125°C | ±2 | nA | |||||
NOISE | |||||||
En | Input voltage noise | (V–) – 0.1 V < VCM < (V+) – 3 V, f = 0.1 Hz to 10 Hz | 1.30 | µVPP | |||
(V+) – 1.5 V < VCM < (V+) + 0.1 V, f = 0.1 Hz to 10 Hz | 4 | ||||||
en | Input voltage noise density | (V–) – 0.1 V < VCM < (V+) – 3 V | f = 100 Hz | 10.5 | nV/√Hz | ||
f = 1 kHz | 5.5 | ||||||
(V+) – 1.5 V < VCM < (V+) + 0.1 V | f = 100 Hz | 32 | |||||
f = 1 kHz | 12.5 | ||||||
in | Input current noise density | f = 1 kHz | 1.5 | fA/√Hz | |||
INPUT VOLTAGE | |||||||
VCM | Common-mode voltage range | (V–) – 0.1 | (V+) + 0.1 | V | |||
CMRR | Common-mode rejection ratio | (V–) – 0.1 V < VCM < (V+) – 3 V | 94 | 110 | dB | ||
TA = –40°C to +125°C | 90 | 104 | |||||
(V+) – 1.5 V < VCM < (V+) | 100 | 120 | |||||
TA = –40°C to +125°C | 84 | 100 | |||||
(V+) – 3 V < VCM < (V+) – 1.5 V | See Typical Characteristics | ||||||
INPUT IMPEDANCE | |||||||
ZID | Differential | 100 || 1.6 | MΩ || pF | ||||
ZIC | Common-mode | 1 || 6.4 | 1013Ω || pF | ||||
OPEN-LOOP GAIN | |||||||
AOL | Open-loop voltage gain | (V–) + 0.6 V < VO < (V+) – 0.6 V, RLOAD = 2 kΩ | 110 | 120 | dB | ||
TA = –40°C to +125°C | 100 | 114 | |||||
(V–) + 0.3 V < VO < (V+) – 0.3 V, RLOAD = 10 kΩ | 110 | 126 | |||||
TA = –40°C to +125°C | 110 | 120 | |||||
FREQUENCY RESPONSE | |||||||
GBW | Unity gain bandwidth | 10 | MHz | ||||
SR | Slew rate | G = 1, 10-V step | 20 | V/µs | |||
ts | Settling time | To 0.01% | VS = ±3 V, G = 1, 5-V step | 1 | µs | ||
tOR | Overload recovery time | VIN× G = VS | 200 | ns | |||
Crosstalk | OPA2192 and OPA4192, at dc | 150 | dB | ||||
OPA2192 and OPA4192, f = 100 kHz | 130 | ||||||
OUTPUT | |||||||
VO | Voltage output swing from rail | Positive rail | No load | 5 | 15 | mV | |
RLOAD = 10 kΩ | 95 | 110 | |||||
RLOAD = 2 kΩ | 430 | 500 | |||||
Negative rail | No load | 5 | 15 | ||||
RLOAD = 10 kΩ | 95 | 110 | |||||
RLOAD = 2 kΩ | 430 | 500 | |||||
ISC | Short-circuit current | ±65 | mA | ||||
CLOAD | Capacitive load drive | See Typical Characteristics | |||||
ZO | Open-loop output impedance | f = 1 MHz, IO = 0 A, see Figure 31 | 375 | Ω | |||
POWER SUPPLY | |||||||
IQ | Quiescent current per amplifier | IO = 0 A | 1 | 1.2 | mA | ||
TA = –40°C to +125°C | 1.5 | ||||||
TEMPERATURE | |||||||
Thermal protection(1) | 140 | °C |
DESCRIPTION | FIGURE |
---|---|
Offset Voltage Production Distribution | Figure 1 to Figure 6 |
Offset Voltage Drift Distribution | Figure 7 to Figure 10 |
Offset Voltage vs Temperature | Figure 11 |
Offset Voltage vs Common-Mode Voltage | Figure 12 to Figure 14 |
Offset Voltage vs Power Supply | Figure 15 |
Open-Loop Gain and Phase vs Frequency | Figure 16 |
Closed-Loop Gain and Phase vs Frequency | Figure 17 |
Input Bias Current vs Common-Mode Voltage | Figure 18 |
Input Bias Current vs Temperature | Figure 19 |
Output Voltage Swing vs Output Current (maximum supply) | Figure 20 |
CMRR and PSRR vs Frequency | Figure 21 |
CMRR vs Temperature | Figure 22 |
PSRR vs Temperature | Figure 23 |
0.1-Hz to 10-Hz Noise | Figure 24 |
Input Voltage Noise Spectral Density vs Frequency | Figure 25 |
THD+N Ratio vs Frequency | Figure 26 |
THD+N vs Output Amplitude | Figure 27 |
Quiescent Current vs Supply Voltage | Figure 28 |
Quiescent Current vs Temperature | Figure 29 |
Open Loop Gain vs Temperature | Figure 30 |
Open Loop Output Impedance vs Frequency | Figure 31 |
Small Signal Overshoot vs Capacitive Load (100-mV Output Step) | Figure 32, Figure 33 |
No Phase Reversal | Figure 34 |
Positive Overload Recovery | Figure 35 |
Negative Overload Recovery | Figure 36 |
Small-Signal Step Response (100 mV) | Figure 37, Figure 38 |
Large-Signal Step Response | Figure 39 |
Settling Time | Figure 40 to Figure 43 |
Short-Circuit Current vs Temperature | Figure 44 |
Maximum Output Voltage vs Frequency | Figure 45 |
Propagation Delay Rising Edge | Figure 46 |
Propagation Delay Falling Edge | Figure 47 |
Crosstalk vs Frequency | Figure 48 |
OPA192ID and OPA2192ID |
OPA192ID and OPA2192ID |
OPA192IDBV, OPA192IDGK, OPA2192IDGK, and OPA4192IPW |
OPA192IDBV, OPA192IDGK, OPA2192IDGK, and OPA4192IPW |
The OPAx192 family of operational amplifiers is manufactured using TI’s e-trim technology. Each amplifier input offset voltage and input offset voltage drift is trimmed in production, thereby minimizing errors associated with input offset voltage and input offset voltage drift. The e-trim technology is a TI proprietary method of trimming internal device parameters during either wafer probing or final testing. When trimming input offset voltage drift the systematic or linear drift error on each device is trimmed to zero. This results in the remaining errors associated with input offset drift are minimal and are the result from only nonlinear error sources. Figure 49 illustrates this concept.
A common method of specifying input offset voltage drift is the box method. The box method estimates a maximum input offset drift by bounding the offset voltage versus temperature curve with a box and using the corners of this bounding box to determine the drift. The slope of the line connecting the diagonal corners of the box corresponds to the input offset voltage drift. Figure 50 shows the box method concept. The box method works particularly well when the input offset drift is dominated by the linear component of drift, but because the OPA192 family uses TI’s e-trim technology to remove the linear component input offset voltage drift, the box method is not a particularly useful method of accurately performing an error analysis. Figure 50 shows 30 typical units of the OPAx192 with the box method superimposed for illustrative purposes. The boundaries of the box are determined by the specified temperature range along the x-axis and the maximum specified input offset voltage across that same temperature range along the y-axis. Using the box method predicts an input offset voltage drift of 0.9 µV/°C. As shown in Figure 50, the slopes of the actual input offset voltage versus temperature are much less than that predicted by the box method. The box method predicts a pessimistic value for the maximum input offset voltage drift and is not recommended when performing an error analysis.
Instead of the box method, a convenient way to illustrate input offset drift is to compute the slopes of the input offset voltage versus temperature curve. This is the same as computing the input offset drift at each point along the input offset voltage versus temperature curve. The results for the OPAx192 family are shown in Figure 51 and Figure 52.
As shown in Figure 51, the input offset drift is typically less than ±0.3 µV/°C over the range from –40°C to +125°C. When performing an error analysis over the full specified temperature range, use the typical and maximum values for input offset voltage drift as described in the Electrical Characteristics tables. If a reduced temperature range is applicable, use the information shown in Figure 51 or Figure 52 when performing an error analysis. To determine the change in input offset voltage, use Equation 1:
where
For example, determine the amount of OPA192ID input offset voltage change over the temperature range of 25°C to 75°C for 1 σ (68%) of the units. As shown in Figure 51, the input offset drift is typically 0.15 µV/°C. This input offset drift results in a typical input offset voltage change of (75°C – 25°C) × 0.15 µV/°C = 7.5 µV .
For 3 σ (99.7%) of the units, Figure 51 shows a typical input offset drift of 0.4 µV/°C. This input offset drift results in a typical input offset voltage change of (75°C – 25°C) × 0.4 µV/°C = 20 µV.
Figure 53 shows six typical units.