SBOS688A April   2015  – October 2015 OPA2625 , OPA625

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics High-Drive Mode
    6. 6.6  Electrical Characteristics Low-Power Mode
    7. 6.7  Electrical Characteristics High-Drive Mode
    8. 6.8  Electrical Characteristics Low-Power Mode
    9. 6.9  Switching Characteristics
    10. 6.10 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 DC Parameter Measurements
    2. 7.2 Transient Parameter Measurements
    3. 7.3 AC Parameter Measurements
    4. 7.4 Noise Parameter Measurements
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 SAR ADC Driver
      2. 8.3.2 Electrical Overstress
    4. 8.4 Device Functional Modes
      1. 8.4.1 High-Drive Mode
      2. 8.4.2 Low-Power Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Single-Supply, 16-Bit, 1-MSPS SAR ADC Driver
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Single-Supply, 16-Bit, 1-MSPS, Multiplexed, SAR ADC Driver
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
        1. 12.1.1.1 TINA-TI (Free Software Download)
        2. 12.1.1.2 TI Precision Designs
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Community Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Parameter Measurement Information

7.1 DC Parameter Measurements

The circuit shown in Figure 64 is used to measure the dc input offset related parameters of the OPAx625. Input offset voltage, power supply rejection ratio, common mode rejection ratio and open loop gain can be measured with this circuit. The basic test procedure requires setting the inputs (the power-supply voltage, VS, and the common-mode voltage, VCM), to the desired values. VO is set to the desired value by adjusting the loop-drive voltage while measuring VO. After all inputs are configured, measure the input offset at the VX measurement point. Calculate the input offset voltage by dividing the measured result by 101. Changing the voltages on the various inputs changes the input offset voltage. The input parameters can be measured according to the relationships illustrated in Equation 1 through Equation 5.

OPA625 OPA2625 DC_Param_test_ckt_sbos688.gif Figure 64. DC-Parameters Measurement Circuit
Equation 1. OPA625 OPA2625 q_vos_bos688.gif
Equation 2. OPA625 OPA2625 q_vosdrift_bos688.gif
Equation 3. OPA625 OPA2625 q_psrr_bos688.gif
Equation 4. OPA625 OPA2625 q_cmrr_bos688.gif
Equation 5. OPA625 OPA2625 q_aol_bos688.gif

7.2 Transient Parameter Measurements

The circuit shown in Figure 65 is used to measure the transient response of the OPAx625. Configure V+, V–, RISO, RLOAD, and CLOAD as desired. Monitor the input and output voltages on an oscilloscope or other signal analyzer. Use this circuit to measure large-signal and small-signal transient response, slew rate, overshoot, and capacitive-load stability.

OPA625 OPA2625 tran_tst_ckt_sbos688.gif Figure 65. Pulse-Response Measurement Circuit

7.3 AC Parameter Measurements

The circuit shown in Figure 66 is used to measure the ac parameters of the OPAx625. Configure V+, V–, and CLOAD as desired. The THS4271 are used to buffer the input and output of the OPAx625 to prevent loading by the gain phase analyzer. Monitor the input and output voltages on a gain phase analyzer. Use this circuit to measure the gain bandwidth product, and open-loop gain versus frequency versus capacitive load.

OPA625 OPA2625 AC_Param_Tst_Ckt_sbos688.gif Figure 66. AC-Parameters Measurement Circuit

7.4 Noise Parameter Measurements

The circuit shown in Figure 67 is used to measure the voltage noise of the OPAx625. Configure V+, V–, and CLOAD as desired.

OPA625 OPA2625 Noise_V_Param_Tst_Ckt_sbos688.gif Figure 67. Voltage Noise Measurement Circuit

The circuit shown in Figure 68 is used to measure the current noise of the OPAx625. Configure V+, V– and CLOAD as desired.

OPA625 OPA2625 Noise_I_Param_Tst_Ckt_sbos688.gif Figure 68. Current Noise Measurement Circuit

The circuit shown in Figure 69 is used to measure the OPAx625 0.1-Hz to 10-Hz voltage noise. Configure V+, V–, and CLOAD as desired.

OPA625 OPA2625 10_Hz_Noise_V_Param_Tst_Ckt_sbos688.gif Figure 69. 0.1-Hz to 10-Hz Voltage-Noise Measurement Circuit