SBOS789C August   2017  – February 2020 OPA2810

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Multichannel Sensor Interface
      2.      Harmonic Distortion vs Frequency
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics: 10 V
    6. 7.6  Electrical Characteristics: 24 V
    7. 7.7  Electrical Characteristics: 5 V
    8. 7.8  Typical Characteristics: VS = 10 V
    9. 7.9  Typical Characteristics: VS = 24 V
    10. 7.10 Typical Characteristics: VS = 5 V
    11. 7.11 Typical Characteristics: ±2.375 V to ±12 V Split Supply
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 OPA2810 Architecture
      2. 8.3.2 ESD Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Split-Supply Operation (±2.375 V to ±13.5 V)
      2. 8.4.2 Single-Supply Operation (4.75 V to 27 V)
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Selection of Feedback Resistors
      2. 9.1.2 Noise Analysis and the Effect of Resistor Elements on Total Noise
    2. 9.2 Typical Applications
      1. 9.2.1 Transimpedance Amplifier
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
      2. 9.2.2 Multichannel Sensor Interface
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Thermal Considerations
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Single-Supply Operation (4.75 V to 27 V)

Many newer systems use a single power supply to improve efficiency and reduce the cost of the extra power supply. The OPA2810 can be used with a single supply (negative supply set to ground) with no change in performance if the input and output are biased within the linear operation of the device. To change the circuit from split supply to a balanced, single-supply configuration, level shift all the voltages by half the difference between the power-supply rails. An additional advantage of configuring an amplifier for single-supply operation is that the effects of PSRR are minimized because the low-supply rail is grounded. See the Single-Supply Op Amp Design Techniques application report for examples of single-supply designs.