SLOS713J January   2011  – March 2021 OPA2835 , OPA835

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparision Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information: OPA835
    5. 7.5 Thermal Information: OPA2835
    6. 7.6 Electrical Characteristics: VS = 2.7 V
    7. 7.7 Electrical Characteristics: VS = 5 V
    8. 7.8 Typical Characteristics: VS = 2.7 V
    9. 7.9 Typical Characteristics: VS = 5 V
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Input Common-Mode Voltage Range
      2. 8.3.2 Output Voltage Range
      3. 8.3.3 Power-Down Operation
      4. 8.3.4 Low-Power Applications and the Effects of Resistor Values on Bandwidth
      5. 8.3.5 Driving Capacitive Loads
    4. 8.4 Device Functional Modes
      1. 8.4.1 Split-Supply Operation (±1.25 V to ±2.75 V)
      2. 8.4.2 Single-Supply Operation (2.5 V to 5.5 V)
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1  Noninverting Amplifier
      2. 9.1.2  Inverting Amplifier
      3. 9.1.3  Instrumentation Amplifier
      4. 9.1.4  Attenuators
      5. 9.1.5  Single-Ended to Differential Amplifier
      6. 9.1.6  Differential to Single-Ended Amplifier
      7. 9.1.7  Differential-to-Differential Amplifier
      8. 9.1.8  Gain Setting With OPA835 RUN Integrated Resistors
      9. 9.1.9  Pulse Application With Single-Supply
      10. 9.1.10 ADC Driver Performance
    2. 9.2 Typical Application
      1. 9.2.1 Audio Frequency Performance
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Active Filters
        1. 9.2.2.1 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Receiving Notification of Documentation Updates
    5. 12.5 Support Resources
    6. 12.6 Trademarks
    7. 12.7 Electrostatic Discharge Caution
    8. 12.8 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Output Voltage Range

The OPA835 and OPA2835 devices are rail-to-rail output (RRO) op amps. Rail-to-rail output typically means that the output voltage swings within a couple hundred millivolts of the supply rails. There are different ways to specify this: one is with the output still in linear operation and another is with the output saturated. Saturated output voltages are closer to the power supply rails than linear outputs, but the signal is not a linear representation of the input. Linear output is a better representation of how well a device performs when used as a linear amplifier. Saturation and linear operation limits are affected by the output current, where higher currents lead to more loss in the output transistors.

The specification tables list linear and saturated output voltage specifications with 2-kΩ load. Figure 7-11 and Figure 7-37 show saturated voltage-swing limits versus output load resistance, and Figure 7-12 and Figure 7-38 show the output saturation voltage versus load current. Given a light load, the output voltage limits have nearly constant headroom to the power rails and track the power supply voltages. For example, with a 2-kΩ load and a single 5-V supply, the linear output voltage ranges from 0.15 V to 4.8 V and ranges from 0.15 V to 2.5 V for a 2.7-V supply. The delta from each power supply rail is the same in either case: 0.15 V and 0.2 V.

With devices like the OPA835 and OPA2835 where the input range is lower than the output range, typically the input will limit the available signal swing only in noninverting gain of 1. Signal swing in noninverting configurations in gains > +1 and inverting configurations in any gain is typically limited by the output voltage limits of the op amp.