SBOS841A November   2016  – January 2017 OPA2316-Q1 , OPA316-Q1 , OPA4316-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information: OPA316-Q1
    5. 6.5 Thermal Information: OPA2316-Q1
    6. 6.6 Thermal Information: OPA4316-Q1
    7. 6.7 Electrical Characteristics
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Operating Voltage
      2. 7.3.2 Rail-to-Rail Input
      3. 7.3.3 Input and ESD Protection
      4. 7.3.4 Common-Mode Rejection Ratio (CMRR)
      5. 7.3.5 EMI Susceptibility and Input Filtering
      6. 7.3.6 Rail-to-Rail Output
      7. 7.3.7 Capacitive Load and Stability
      8. 7.3.8 Overload Recovery
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 General Configurations
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Amplifier Selection
        2. 8.2.2.2 Passive Component Selection
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Related Links
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

over operating free-air temperature (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage 7 V
Signal input pins Voltage(2) Common-mode (V–) – 0.5 (V+) + 0.5 V
Differential (V+) – (V–) + 0.2 V
Current(2) –10 10 mA
Output short-circuit(3) Continuous
TA Operating temperature –55 150 °C
TJ Junction temperature 150 °C
Tstg Storage temperature –65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Input pins are diode-clamped to the power-supply rails. Current limit input signals that can swing more than 0.5 V beyond the supply rails to 10 mA or less.
Short-circuit to ground, one amplifier per package.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±4000 V
Charged-device model (CDM), per AEC Q100-011 ±750
AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VS Supply voltage 1.8 5.5 V
Specified temperature –40 125 °C

Thermal Information: OPA316-Q1

THERMAL METRIC(1) OPA316-Q1 UNIT
DBV (SOT-23)
5 PINS
RθJA Junction-to-ambient thermal resistance(2) 221.7 °C/W
RθJC(top) Junction-to-case(top) thermal resistance(3) 144.7 °C/W
RθJB Junction-to-board thermal resistance(4) 49.7 °C/W
ψJT Junction-to-top characterization parameter(5) 26.1 °C/W
ψJB Junction-to-board characterization parameter(6) 49 °C/W
RθJC(bot) Junction-to-case(bottom) thermal resistance(7) N/A °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).
The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).
The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

Thermal Information: OPA2316-Q1

THERMAL METRIC(1) OPA2316-Q1 UNIT
DGK (VSSOP)
8 PINS
RθJA Junction-to-ambient thermal resistance(2) 186.6 °C/W
RθJC(top) Junction-to-case(top) thermal resistance(3) 78.8 °C/W
RθJB Junction-to-board thermal resistance(4) 107.9 °C/W
ψJT Junction-to-top characterization parameter(5) 15.5 °C/W
ψJB Junction-to-board characterization parameter(6) 106.3 °C/W
RθJC(bot) Junction-to-case(bottom) thermal resistance(7) N/A °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).
The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining RθJA, using a procedure described in JESD51-2a (sections 6 and 7).
The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

Thermal Information: OPA4316-Q1

THERMAL METRIC(1) OPA4316-Q1 UNIT
PW (TSSOP)
14 PINS
RθJA Junction-to-ambient thermal resistance(2) 117.2 °C/W
RθJC(top) Junction-to-case(top) thermal resistance(3) 46.2 °C/W
RθJB Junction-to-board thermal resistance(4) 58.9 °C/W
ψJT Junction-to-top characterization parameter(5) 4.9 °C/W
ψJB Junction-to-board characterization parameter(6) 58.3 °C/W
RθJC(bot) Junction-to-case(bottom) thermal resistance(2) N/A °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.

Electrical Characteristics

VS (total supply voltage) = (V+) – (V–) = 1.8 V to 5.5 V.
at TA = 25°C, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2, unless otherwise noted
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OFFSET VOLTAGE
VOS Input offset voltage VS = 5 V ±0.5 ±2.5 mV
VS = 5 V, TA = –40°C to 125°C ±3.5 mV
dVOS/dT Drift VS = 5 V, TA = –40°C to 125°C ±2 ±10 μV/°C
PSRR vs power supply VS = 1.8 V – 5.5 V, VCM = (V–) ±30 ±150 µV/V
VS = 1.8 V – 5.5 V, VCM = (V–), TA = –40°C to 125°C ±250 µV/V
Channel separation, dc At dc 10 µV/V
INPUT VOLTAGE RANGE
VCM Common-mode voltage VS = 1.8 V to 2.5 V (V–) – 0.2 (V+) V
VS = 2.5 V to 5.5 V (V–) – 0.2 (V+) + 0.2 V
CMRR Common-mode rejection ratio VS = 1.8 V, (V–) – 0.2 V < VCM < (V+) – 1.4 V,
TA= –40°C to 125°C
70 86 dB
VS = 5.5 V, (V–) – 0.2 V < VCM < (V+) – 1.4 V,
TA= –40°C to 125°C
76 90 dB
VS = 1.8 V, VCM = –0.2 V to 1.8 V,
TA= –40°C to 125°C
57 72 dB
VS = 5.5 V, VCM = –0.2 V to 5.7 V,
TA= –40°C to 125°C
65 80 dB
INPUT BIAS CURRENT
IB Input bias current ±5 ±15 pA
TA= –40°C to 125°C ±15 nA
IOS Input offset current ±2 ±15 pA
TA= –40°C to 125°C ±8 nA
NOISE
En Input voltage noise (peak-to-peak) VS = 5 V, f = 0.1 Hz to 10 Hz 3 μVPP
en Input voltage noise density VS = 5 V, f = 1 kHz 11 nV/√Hz
in Input current noise density f = 1 kHz 1.3 fA/√Hz
INPUT IMPEDANCE
ZID Differential 2 || 2 1016Ω || pF
ZIC Common-mode 2 || 4 1011Ω || pF
OPEN-LOOP GAIN
AOL Open-loop voltage gain VS = 1.8 V, (V–) + 0.04 V < VO < (V+) – 0.04 V,
RL = 10 kΩ
94 100 dB
VS = 5.5 V, (V–) + 0.05 V < VO < (V+) – 0.05 V,
RL = 10 kΩ
104 110 dB
VS = 1.8 V, (V–) + 0.1 V < VO < (V+) – 0.1 V,
RL = 2 kΩ
90 96 dB
VS = 5.5 V, (V–) + 0.15 V < VO < (V+) – 0.15 V,
RL = 2 kΩ
100 106 dB
VS = 5.5 V, (V–) + 0.05 V < VO < (V+) – 0.05 V,
RL = 10 kΩ, TA= –40°C to 125°C
86 dB
VS = 5.5 V, (V–) + 0.15 V < VO < (V+) – 0.15 V,
RL = 2 kΩ, TA= –40°C to 125°C
84 dB
FREQUENCY RESPONSE
GBP Gain bandwidth product VS = 5 V, G = 1 10 MHz
φm Phase margin VS = 5 V, G = 1 60 Degrees
SR Slew rate VS = 5 V, G = 1 6 V/μs
tS Settling time To 0.1%, VS = 5 V, 2-V step , G = 1, CL = 100 pF 1 μs
To 0.01%, VS = 5 V, 2-V step , G = 1, CL = 100 pF 1.66 μs
tOR Overload recovery time VS = 5 V, VIN  × gain = VS 0.3 μs
THD + N Total harmonic distortion + noise(1) VS = 5 V, VO = 0.5 VRMS, G = 1
f = 1 kHz
0.0008%
OUTPUT
VO Voltage output swing from supply rails VS = 1.8 V, RL = 10 kΩ, TA= –40°C to 125°C 15 mV
VS = 5.5 V, RL = 10 kΩ, TA= –40°C to 125°C 30 mV
VS = 1.8 V, RL = 2 kΩ, TA= –40°C to 125°C 60 mV
VS = 5.5 V, RL = 2 kΩ, TA= –40°C to 125°C 120 mV
ISC Short-circuit current VS = 5 V ±50 mA
ZO Open-loop output impedance VS = 5 V, f = 10 MHz 250 Ω
POWER SUPPLY
VS Specified voltage 1.8 5.5 V
IQ Quiescent current per amplifier VS = 5 V, IO = 0 mA, TA= –40°C to 125°C 400 500 µA
Power-on time VS = 0 V to 5.5 V 200 µs
Third-order filter; bandwidth = 80 kHz at –3 dB.

Typical Characteristics

at TA = 25°C, VS = 5.5 V, RL = 10 kΩ connected to VS / 2, VCM = VS / 2, and VOUT = VS / 2, unless otherwise noted.
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C001_OT.png
Distribution taken from 12551 amplifiers
Figure 1. Offset Voltage Production Distribution
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C003_OT.png
9 typical units shown
Figure 3. Offset Voltage vs Temperature
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C005_OT.png
V+ = 0.9 V to 2.75 V, V– = –0.9 V to –2.75 V,
9 typical units shown
Figure 5. Offset Voltage vs Power Supply
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C022A_OT.png
RL = 10 kΩ
Figure 7. Open-Loop Gain vs Temperature
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C007_SBOS703.png
Figure 9. Closed-Loop Gain vs Frequency
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C010B_OT.png
V+ = 2.75 V, V– = –2.75 V
Figure 11. Output Voltage Swing vs Output Current
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C012A_OT.png
Figure 13. CMRR vs Temperature (Narrow Range)
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C013_OT.png
Figure 15. PSRR vs Temperature
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C015_SBOS703.png
Figure 17. Input Voltage Noise Spectral Density vs Frequency
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C017y_SBOS703.png
Bandwidth = 80 kHz, VOUT = 0.5 VRMS
Figure 19. THD + N vs Frequency
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C020_OT.png
Figure 21. Quiescent Current vs Supply Voltage
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C024_SBOS703.png
Figure 23. Open-Loop Output Impedance vs Frequency
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C026_SBOS703.png
V+ = 2.75 V G = +1 V/V RL = 1 kΩ
V– = –2.75 V
Figure 25. Small-Signal Overshoot vs Load Capacitance
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C028_SBOS703.png
V+ = 2.75 V V– = –2.75 V G = –10 V/V
Figure 27. Positive Overload Recovery
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C030_SBOS703.png
V+ = 2.75 V V– = –2.75 V G = +1 V/V
Figure 29. Small-Signal Step Response
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C032_SBOS703.png
CL = 100 pF G = +1 V/V
Figure 31. Positive Large-Signal Settling Time
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C034_OT.png
Figure 33. Short-Circuit Current vs Temperature
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C036_SBOS703.png
PRF = –10 dBm
Figure 35. Electromagnetic Interference Rejection Ratio
Referred to Noninverting Input (EMIRR IN+) vs Frequency
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C002_OT.png
TA = –40°C to +125°C, Distribution taken from 70 amplifiers
Figure 2. Offset Voltage Drift Distribution
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C004_OT.png
V+ = 2.75 V, V– = –2.75 V, 9 typical units shown
Figure 4. Offset Voltage vs Common-Mode Voltage
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C006_SBOS703.png
VCM < (V+) – 1.4 V
Figure 6. Open-Loop Gain and Phase vs Frequency
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C022B_OT.png
RL = 2 kΩ
Figure 8. Open-Loop Gain vs Temperature
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C009_OT.png
Figure 10. Input Bias and Offset Current vs Temperature
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C011_SBOS703.png
Figure 12. CMRR and PSRR vs Frequency
(Referred to Input)
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C012B_OT.png
Figure 14. CMRR vs Temperature (Wide Range)
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C014_SBOS703.png
Figure 16. 0.1-Hz to 10-Hz Input Voltage Noise
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C039_SBOS703.png
ƒ = 1 kHz
Figure 18. Input Voltage Noise vs Common-Mode Voltage
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C018_SBOS703.png
ƒ = 1 kHz, Bandwidth = 80 kHz
Figure 20. THD + N vs Amplitude
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C021_OT.png
Figure 22. Quiescent Current vs Temperature
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C025_SBOS703.png
V+ = 2.75 V V– = –2.75 V G = –1 V/V
Figure 24. Small-Signal Overshoot vs Load Capacitance
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C027_SBOS703.png
V+ = 2.75 V V– = –2.75 V
Figure 26. No Phase Reversal
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C029_SBOS703.png
V+ = 2.75 V V– = –2.75 V G = –10 V/V
Figure 28. Negative Overload Recovery
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C031_SBOS703.png
V+ = 2.75 V CL = 100 pF G = +1 V/V
V– = –2.75 V
Figure 30. Large-Signal Step Response
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C033_SBOS703.png
CL = 100 pF G = +1 V/V
Figure 32. Negative Large-Signal Settling Time
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C035_SBOS703.png
Figure 34. Maximum Output Voltage vs
Frequency and Supply Voltage
OPA316-Q1 OPA2316-Q1 OPA4316-Q1 C00111_SBOS703.png
V+ = 2.75 V, V– = –2.75 V
Figure 36. Channel Separation vs Frequency