SBOS807E December   2016  – May 2020 OPA187 , OPA2187 , OPA4187

UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      OPAx187 Offers Precision Low-Side Current Measurement Capability
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions: OPA187
    2.     Pin Functions: OPA2187
    3.     Pin Functions: OPA4187
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information: OPA187
    5. 6.5 Thermal Information: OPA2187
    6. 6.6 Thermal Information: OPA4187
    7. 6.7 Electrical Characteristics: High-Voltage Operation
    8. 6.8 Electrical Characteristics: Low-Voltage Operation
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Operating Characteristics
      2. 7.3.2 Phase-Reversal Protection
      3. 7.3.3 Input Bias Current Clock Feedthrough
      4. 7.3.4 Internal Offset Correction
      5. 7.3.5 EMI Rejection
      6. 7.3.6 Capacitive Load and Stability
      7. 7.3.7 Electrical Overstress
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 High-Side Voltage-to-Current (V-I) Converter
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 Discrete INA + Attenuation for ADC With 3.3-V Supply
      3. 8.2.3 Bridge Amplifier
      4. 8.2.4 Low-Side Current Monitor
      5. 8.2.5 Programmable Power Supply
      6. 8.2.6 RTD Amplifier With Linearization
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 TINA-TI™ (Free Software Download)
        2. 11.1.1.2 TI Precision Designs
        3. 11.1.1.3 WEBENCH® Filter Designer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Related Links
    4. 11.4 Receiving Notification of Documentation Updates
    5. 11.5 Support Resources
    6. 11.6 Trademarks
    7. 11.7 Electrostatic Discharge Caution
    8. 11.8 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage Supply, VS = (V+) – (V) 40 V
Signal input pin(2) (V) – 0.5 (V+) + 0.5
Signal output pin(3) (V) – 0.5 (V+) + 0.5
Current Signal input pin(2) –10 10 mA
Signal output pin(3) –55 55 mA
Output short-circuit(4) Continuous Continuous
Temperature Operating range, TA –55 150 °C
Junction, TJ 150
Storage, Tstg –65 150
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5 V beyond the supply rails should be current limited to ±10 mA or less.
Output terminals are diode-clamped to the power-supply rails. Output signals that can swing more than 0.5 V beyond the supply rails should be current limited to ±55 mA or less.
Short-circuit to ground, one amplifier per package.