SBOS620E December   2013  – November 2015 OPA192 , OPA2192 , OPA4192

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information: OPA192
    5. 6.5  Thermal Information: OPA2192
    6. 6.6  Thermal Information: OPA4192
    7. 6.7  Electrical Characteristics: VS = ±4 V to ±18 V (VS = +8 V to +36 V)
    8. 6.8  Electrical Characteristics: VS = ±2.25 V to ±4 V (VS = +4.5 V to +8 V)
    9. 6.9  Typical Characteristics
    10. 6.10 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Input Offset Voltage Drift
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Input Protection Circuitry
      2. 8.3.2 EMI Rejection
      3. 8.3.3 Phase Reversal Protection
      4. 8.3.4 Thermal Protection
      5. 8.3.5 Capacitive Load and Stability
      6. 8.3.6 Common-Mode Voltage Range
      7. 8.3.7 Electrical Overstress
      8. 8.3.8 Overload Recovery
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 16-Bit Precision Multiplexed Data-Acquisition System
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curve
      2. 9.2.2 Slew Rate Limit for Input Protection
      3. 9.2.3 Precision Reference Buffer
  10. 10Power-Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
        1. 12.1.1.1 TINA-TI (Free Software Download)
        2. 12.1.1.2 TI Precision Designs
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Community Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
Supply voltage, VS = (V+) – (V–) ±20
(40, single supply)
V
Signal input pins Voltage Common-mode (V–) – 0.5 (V+) + 0.5 V
Differential (V+) – (V–) + 0.2
Current ±10 mA
Output short circuit(2) Continuous
Temperature Operating range –55 150 °C
Junction 150
Storage, Tstg –65 150
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Short-circuit to ground, one amplifier per package.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±4000 V
OPA192
V(ESD) Electrostatic discharge Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000 V
OPA2192
V(ESD) Electrostatic discharge Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±750 V
OPA4192
V(ESD) Electrostatic discharge Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Supply voltage, VS = (V+) – (V–) 4.5 (±2.25) 36 (±18) V
Specified temperature –40 +125 °C

6.4 Thermal Information: OPA192

THERMAL METRIC(1) OPA192 UNIT
D (SOIC) DBV (SOT) DGK (VSSOP)
8 PINS 5 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 115.8 158.8 180.4 °C/W
RθJC(top) Junction-to-case(top) thermal resistance 60.1 60.7 67.9 °C/W
RθJB Junction-to-board thermal resistance 56.4 44.8 102.1 °C/W
ψJT Junction-to-top characterization parameter 12.8 1.6 10.4 °C/W
ψJB Junction-to-board characterization parameter 55.9 4.2 100.3 °C/W
RθJC(bot) Junction-to-case(bottom) thermal resistance N/A N/A N/A °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Thermal Information: OPA2192

THERMAL METRIC(1) OPA2192 UNIT
D (SOIC) DGK (VSSOP)
8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 107.9 158 °C/W
RθJC(top) Junction-to-case(top) thermal resistance 53.9 48.6 °C/W
RθJB Junction-to-board thermal resistance 48.9 78.7 °C/W
ψJT Junction-to-top characterization parameter 6.6 3.9 °C/W
ψJB Junction-to-board characterization parameter 48.3 77.3 °C/W
RθJC(bot) Junction-to-case(bottom) thermal resistance N/A N/A °C/W

6.6 Thermal Information: OPA4192

THERMAL METRIC(1) OPA4192 UNIT
D (SOIC) PW (TSSOP)
14 PINS 14 PINS
RθJA Junction-to-ambient thermal resistance 86.4 92.6 °C/W
RθJC(top) Junction-to-case(top) thermal resistance 46.3 27.5 °C/W
RθJB Junction-to-board thermal resistance 41.0 33.6 °C/W
ψJT Junction-to-top characterization parameter 11.3 1.9 °C/W
ψJB Junction-to-board characterization parameter 40.7 33.1 °C/W
RθJC(bot) Junction-to-case(bottom) thermal resistance N/A N/A °C/W

6.7 Electrical Characteristics: VS = ±4 V to ±18 V (VS = +8 V to +36 V)

At TA = +25°C, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OFFSET VOLTAGE
VOS Input offset voltage ±5 ±25 µV
TA = 0°C to 85°C ±8 ±50
TA = –40°C to +125°C ±10 ±75
VCM = (V+) – 1.5 V ±10 ±40
TA = 0°C to 85°C ±25 ±150
TA = –40°C to +125°C ±50 ±250
dVOS/dT Input offset voltage drift D packages only TA = 0°C to 85°C ±0.1 ±0.5 µV/°C
TA = –40°C to +125°C ±0.15 ±0.8
DBV, DGK, and PW packages only TA = 0°C to 85°C ±0.1 ±0.8
TA = –40°C to +125°C ±0.2 ±1.0
PSRR Power-supply rejection ratio TA = –40°C to +125°C ±0.3 ±1.0 µV/V
INPUT BIAS CURRENT
IB Input bias current ±5 ±20 pA
TA = –40°C to +125°C ±5 nA
IOS Input offset current ±2 ±20 pA
TA = –40°C to +125°C ±2 nA
NOISE
En Input voltage noise (V–) – 0.1 V < VCM < (V+) – 3 V f = 0.1 Hz to 10 Hz 1.30 µVPP
(V+) – 1.5 V < VCM < (V+) + 0.1 V f = 0.1 Hz to 10 Hz 4
en Input voltage noise density (V–) – 0.1 V < VCM < (V+) – 3 V f = 100 Hz 10.5 nV/√Hz
f = 1 kHz 5.5
(V+) – 1.5 V < VCM < (V+) + 0.1 V f = 100 Hz 32
f = 1 kHz 12.5
NOISE (continued)
in Input current noise density f = 1 kHz 1.5 fA/√Hz
INPUT VOLTAGE
VCM Common-mode voltage range (V–) – 0.1 (V+) + 0.1 V
CMRR Common-mode rejection ratio (V–) – 0.1 V < VCM < (V+) – 3 V 120 140 dB
TA = –40°C to +125°C 114 126
(V+) – 1.5 V < VCM < (V+) 100 120
TA = –40°C to +125°C 86 100
(V+) – 3 V < VCM < (V+) – 1.5 V See Typical Characteristics
INPUT IMPEDANCE
ZID Differential 100 || 1.6 MΩ || pF
ZIC Common-mode 1 || 6.4 1013Ω || pF
OPEN-LOOP GAIN
AOL Open-loop voltage gain (V–) + 0.6 V < VO < (V+) – 0.6 V, RLOAD = 2 kΩ 120 134 dB
TA = –40°C to +125°C 114 126
(V–) + 0.3 V < VO < (V+) – 0.3 V, RLOAD = 10 kΩ 126 140
TA = –40°C to +125°C 120 134
FREQUENCY RESPONSE
GBW Unity gain bandwidth 10 MHz
SR Slew rate G = 1, 10-V step 20 V/µs
ts Settling time To 0.01% V S = ±18 V, G = 1, 10-V step 1.4 µs
V S = ±18 V, G = 1, 5-V step 0.9
To 0.001% V S = ±18 V, G = 1, 10-V step 2.1
V S = ±18 V, G = 1, 5-V step 1.8
tOR Overload recovery time VIN × G = VS 200 ns
THD+N Total harmonic distortion + noise G = 1, f = 1 kHz, VO = 3.5 VRMS 0.00008%
Crosstalk OPA2192 and OPA4192, at dc 150 dB
OPA2192 and OPA4192, f = 100 kHz 130
OUTPUT
VO Voltage output swing from rail Positive rail No load 5 15 mV
RLOAD = 10 kΩ 95 110
RLOAD = 2 kΩ 430 500
Negative rail No load 5 15
RLOAD = 10 kΩ 95 110
RLOAD = 2 kΩ 430 500
ISC Short-circuit current ±65 mA
CLOAD Capacitive load drive See Typical Characteristics
ZO Open-loop output impedance f = 1 MHz, IO = 0 A, see Figure 31 375 Ω
POWER SUPPLY
IQ Quiescent current per amplifier IO = 0 A 1 1.2 mA
TA = –40°C to +125°C, IO = 0 A 1.5
TEMPERATURE
Thermal protection(1) 140 °C

6.8 Electrical Characteristics: VS = ±2.25 V to ±4 V (VS = +4.5 V to +8 V)

At TA = +25°C, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OFFSET VOLTAGE
VOS Input offset voltage VCM = (V+) – 3 V ±5 ±25 µV
TA = 0°C to 85°C ±8 ±50
TA = –40°C to +125°C ±10 ±75
(V+) – 3.5 V < VCM < (V+) – 1.5 V See Common-Mode Voltage Range section
VCM = (V+) – 1.5 V ±10 ±40 µV
TA = 0°C to 85°C ±25 ±150
TA = –40°C to +125°C ±50 ±250
dVOS/dT Input offset voltage drift VCM = (V+) – 3 V,
D packages only
TA = 0°C to 85°C ±0.1 ±0.5 µV/°C
TA = –40°C to +125°C ±0.15 ±0.8
VCM = (V+) – 3 V,
DBV, DGK, and PW packages only
TA = 0°C to 85°C ±0.1 ±0.8
TA = –40°C to +125°C ±0.2 ±1.1
VCM = (V+) – 1.5 V, TA = –40°C to +125°C ±0.5 ±3
PSRR Power-supply rejection ratio TA = –40°C to +125°C, VCM = VS / 2 – 0.75 V ±1 µV/V
INPUT BIAS CURRENT
IB Input bias current ±5 ±20 pA
TA = –40°C to +125°C ±5 nA
IOS Input offset current ±2 ±20 pA
TA = –40°C to +125°C ±2 nA
NOISE
En Input voltage noise (V–) – 0.1 V < VCM < (V+) – 3 V, f = 0.1 Hz to 10 Hz 1.30 µVPP
(V+) – 1.5 V < VCM < (V+) + 0.1 V, f = 0.1 Hz to 10 Hz 4
en Input voltage noise density (V–) – 0.1 V < VCM < (V+) – 3 V f = 100 Hz 10.5 nV/√Hz
f = 1 kHz 5.5
(V+) – 1.5 V < VCM < (V+) + 0.1 V f = 100 Hz 32
f = 1 kHz 12.5
in Input current noise density f = 1 kHz 1.5 fA/√Hz
INPUT VOLTAGE
VCM Common-mode voltage range (V–) – 0.1 (V+) + 0.1 V
CMRR Common-mode rejection ratio (V–) – 0.1 V < VCM < (V+) – 3 V 94 110 dB
TA = –40°C to +125°C 90 104
(V+) – 1.5 V < VCM < (V+) 100 120
TA = –40°C to +125°C 84 100
(V+) – 3 V < VCM < (V+) – 1.5 V See Typical Characteristics
INPUT IMPEDANCE
ZID Differential 100 || 1.6 MΩ || pF
ZIC Common-mode 1 || 6.4 1013Ω || pF
OPEN-LOOP GAIN
AOL Open-loop voltage gain (V–) + 0.6 V < VO < (V+) – 0.6 V, RLOAD = 2 kΩ 110 120 dB
TA = –40°C to +125°C 100 114
(V–) + 0.3 V < VO < (V+) – 0.3 V, RLOAD = 10 kΩ 110 126
TA = –40°C to +125°C 110 120
FREQUENCY RESPONSE
GBW Unity gain bandwidth 10 MHz
SR Slew rate G = 1, 10-V step 20 V/µs
ts Settling time To 0.01% VS = ±3 V, G = 1, 5-V step 1 µs
tOR Overload recovery time VIN× G = VS 200 ns
Crosstalk OPA2192 and OPA4192, at dc 150 dB
OPA2192 and OPA4192, f = 100 kHz 130
OUTPUT
VO Voltage output swing from rail Positive rail No load 5 15 mV
RLOAD = 10 kΩ 95 110
RLOAD = 2 kΩ 430 500
Negative rail No load 5 15
RLOAD = 10 kΩ 95 110
RLOAD = 2 kΩ 430 500
ISC Short-circuit current ±65 mA
CLOAD Capacitive load drive See Typical Characteristics
ZO Open-loop output impedance f = 1 MHz, IO = 0 A, see Figure 31 375 Ω
POWER SUPPLY
IQ Quiescent current per amplifier IO = 0 A 1 1.2 mA
TA = –40°C to +125°C 1.5
TEMPERATURE
Thermal protection(1) 140 °C
(1) For a detailed description of thermal protection, see the Thermal Protection section.

6.9 Typical Characteristics

Table 1. Table of Graphs

DESCRIPTION FIGURE
Offset Voltage Production Distribution Figure 1 to Figure 6
Offset Voltage Drift Distribution Figure 7 to Figure 10
Offset Voltage vs Temperature Figure 11
Offset Voltage vs Common-Mode Voltage Figure 12 to Figure 14
Offset Voltage vs Power Supply Figure 15
Open-Loop Gain and Phase vs Frequency Figure 16
Closed-Loop Gain and Phase vs Frequency Figure 17
Input Bias Current vs Common-Mode Voltage Figure 18
Input Bias Current vs Temperature Figure 19
Output Voltage Swing vs Output Current (maximum supply) Figure 20
CMRR and PSRR vs Frequency Figure 21
CMRR vs Temperature Figure 22
PSRR vs Temperature Figure 23
0.1-Hz to 10-Hz Noise Figure 24
Input Voltage Noise Spectral Density vs Frequency Figure 25
THD+N Ratio vs Frequency Figure 26
THD+N vs Output Amplitude Figure 27
Quiescent Current vs Supply Voltage Figure 28
Quiescent Current vs Temperature Figure 29
Open Loop Gain vs Temperature Figure 30
Open Loop Output Impedance vs Frequency Figure 31
Small Signal Overshoot vs Capacitive Load (100-mV Output Step) Figure 32, Figure 33
No Phase Reversal Figure 34
Positive Overload Recovery Figure 35
Negative Overload Recovery Figure 36
Small-Signal Step Response (100 mV) Figure 37, Figure 38
Large-Signal Step Response Figure 39
Settling Time Figure 40 to Figure 43
Short-Circuit Current vs Temperature Figure 44
Maximum Output Voltage vs Frequency Figure 45
Propagation Delay Rising Edge Figure 46
Propagation Delay Falling Edge Figure 47
Crosstalk vs Frequency Figure 48

6.10 Typical Characteristics

At TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted.
OPA192 OPA2192 OPA4192 C032_.png
Figure 1. Offset Voltage Production Distribution at 25°C
OPA192 OPA2192 OPA4192 C027_OT.png
Figure 3. Offset Voltage Production Distribution at 85°C
OPA192 OPA2192 OPA4192 C025_OT.png
Figure 5. Offset Voltage Production Distribution at –25°C
OPA192 OPA2192 OPA4192 C042_OT.png
OPA192ID and OPA2192ID
Figure 7. Offset Voltage Drift Distribution
from –40°C to +125°C
OPA192 OPA2192 OPA4192 C043_OT.png
OPA192ID and OPA2192ID
Figure 9. Offset Voltage Drift Distribution
from 0°C to 85°C
OPA192 OPA2192 OPA4192 C035_OT.png
Figure 11. Offset Voltage vs Temperature
OPA192 OPA2192 OPA4192 C003_OT.png
Figure 13. Offset Voltage vs Common-Mode Voltage
OPA192 OPA2192 OPA4192 C006_OT.png
Figure 15. Offset Voltage vs Power Supply
OPA192 OPA2192 OPA4192 C003_SBOS620.png
Figure 17. Closed-Loop Gain and Phase vs Frequency
OPA192 OPA2192 OPA4192 C015_OT.png
Figure 19. Input Bias Current vs Temperature
OPA192 OPA2192 OPA4192 C012_SBOS620.png
Figure 21. CMRR and PSRR vs Frequency
OPA192 OPA2192 OPA4192 C007_OT.png
Figure 23. PSRR vs Temperature
OPA192 OPA2192 OPA4192 C002_SBOS620.png
Figure 25. Input Voltage Noise Spectral Density
vs Frequency
OPA192 OPA2192 OPA4192 C008_SBOS620.png
Figure 27. THD+N vs Output Amplitude
OPA192 OPA2192 OPA4192 C011_OT.png
Figure 29. Quiescent Current vs Temperature
OPA192 OPA2192 OPA4192 C016_SBOS620.png
Figure 31. Open-Loop Output Impedance vs Frequency
OPA192 OPA2192 OPA4192 C013b_SBOS620.png
Figure 33. Small-Signal Overshoot vs Capacitive Load
(100-mV Output Step)
OPA192 OPA2192 OPA4192 C009_SBOS620.png
Figure 35. Positive Overload Recovery
OPA192 OPA2192 OPA4192 C015_SBOS620.png
Figure 37. Small-Signal Step Response (100 mV)
OPA192 OPA2192 OPA4192 C005_SBOS620.png
Figure 39. Large-Signal Step Response
OPA192 OPA2192 OPA4192 C034b_.png
Figure 41. Settling Time (5-V Positive Step)
OPA192 OPA2192 OPA4192 C034b_.png
Figure 43. Settling Time (5-V Negative Step)
OPA192 OPA2192 OPA4192 C033_.png
Figure 45. Maximum Output Voltage vs Frequency
OPA192 OPA2192 OPA4192 C026_.png
Figure 47. Propagation Delay Falling Edge
OPA192 OPA2192 OPA4192 C028_OT.png
Figure 2. Offset Voltage Production Distribution at 125°C
OPA192 OPA2192 OPA4192 C026_OT.png
Figure 4. Offset Voltage Production Distribution at 0°C
OPA192 OPA2192 OPA4192 C024_OT.png
Figure 6. Offset Voltage Production Distribution at –40°C
OPA192 OPA2192 OPA4192 C045_OT.png
OPA192IDBV, OPA192IDGK, OPA2192IDGK, and OPA4192IPW
Figure 8. Offset Voltage Drift Distribution
from –40°C to +125°C
OPA192 OPA2192 OPA4192 C044_OT.png
OPA192IDBV, OPA192IDGK, OPA2192IDGK, and OPA4192IPW
Figure 10. Offset Voltage Drift Distribution
from 0°C to 85°C
OPA192 OPA2192 OPA4192 C002_OT.png
Figure 12. Offset Voltage vs Common-Mode Voltage
OPA192 OPA2192 OPA4192 C005_OT.png
Figure 14. Offset Voltage vs Common-Mode Voltage
OPA192 OPA2192 OPA4192 C004_SBOS620.png
Figure 16. Open-Loop Gain and Phase vs Frequency
OPA192 OPA2192 OPA4192 C017_OT.png
Figure 18. Input Bias Current vs Common-Mode Voltage
OPA192 OPA2192 OPA4192 C018_OT.png
Figure 20. Output Voltage Swing vs Output Current (Maximum Supply)
OPA192 OPA2192 OPA4192 C008_OT.png
Figure 22. CMRR vs Temperature
OPA192 OPA2192 OPA4192 C001_SBOS620.png
Figure 24. 0.1-Hz to 10-Hz Noise
OPA192 OPA2192 OPA4192 C007_SBOS620.png
Figure 26. THD+N Ratio vs Frequency
OPA192 OPA2192 OPA4192 C012_OT.png
Figure 28. Quiescent Current vs Supply Voltage
OPA192 OPA2192 OPA4192 C009_OT.png
Figure 30. Open-Loop Gain vs Temperature
OPA192 OPA2192 OPA4192 C013_SBOS620.png
Figure 32. Small-Signal Overshoot vs Capacitive Load
(100-mV Output Step)
OPA192 OPA2192 OPA4192 C011_SBOS620.png
Figure 34. No Phase Reversal
OPA192 OPA2192 OPA4192 C010_SBOS620.png
Figure 36. Negative Overload Recovery
OPA192 OPA2192 OPA4192 C006_SBOS620.png
Figure 38. Small-Signal Step Response (100 mV)
OPA192 OPA2192 OPA4192 C034_.png
Figure 40. Settling Time (10-V Positive Step)
OPA192 OPA2192 OPA4192 C034c_.png
Figure 42. Settling Time (10-V Negative Step)
OPA192 OPA2192 OPA4192 C016_OT.png
Figure 44. Short-Circuit Current vs Temperature
OPA192 OPA2192 OPA4192 C025_.png
Figure 46. Propagation Delay Rising Edge
OPA192 OPA2192 OPA4192 D001_SBOS620.gif
Figure 48. Crosstalk vs Frequency