SBOS981J October   2019  – April 2021 OPA2607 , OPA607

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Operating Voltage
      2. 8.3.2 Rail-to-Rail Output and Driving Capacitive Loads
      3. 8.3.3 Input and ESD Protection
      4. 8.3.4 Decompensated Architecture with Wide Gain-Bandwidth Product
    4. 8.4 Device Functional Modes
      1. 8.4.1 Normal Operating Mode
      2. 8.4.2 Power Down Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 100-kΩ Gain Transimpedance Design
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Noninverting Gain of 3 V/V
      3. 9.2.3 High-Input Impedance (Hi-Z), High-Gain Signal Front-End
        1. 9.2.3.1 Design Requirements
        2. 9.2.3.2 Detailed Design Procedure
        3. 9.2.3.3 Application Curves
      4. 9.2.4 Low-Cost, Low Side, High-Speed Current Sensing
        1. 9.2.4.1 Design Requirements
        2. 9.2.4.2 Detailed Design Procedure
        3. 9.2.4.3 Application Curves
      5. 9.2.5 Ultrasonic Flow Meters
        1. 9.2.5.1 Design Requirements
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Examples
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Receiving Notification of Documentation Updates
    5. 12.5 Support Resources
    6. 12.6 Trademarks
    7. 12.7 Electrostatic Discharge Caution
    8. 12.8 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The OPA607 and OPA2607 devices are decompensated, minimum gain of 6 V/V stable, general-purpose CMOS operational amplifier with low noise of 3.8 nV/√ Hz and a GBW of 50 MHz. The low noise and wide bandwidth of the OPAx607 devices make them attractive for general-purpose applications which require a good balance between cost and performance. The high-impedance CMOS inputs make the OPAx607 devices an ideal amplifier to interface with sensors with high output impedance (for example, piezoelectric transducers).

The OPAx607 devices feature a Power Down mode with a maximum quiescent current of less than 1 µA, making the device suitable for use in portable battery-powered applications. The rail-to-rail output (RRO) of the OPAx607 devices can swing up to 8 mV from the supply rails, maximizing dynamic range.

The OPAx607 is optimized for low supply voltage operation as low as 2.2 V (±1.1 V) and up to 5.5 V (±2.75 V), and is specified over the temperature range of –40°C to +125°C.

Device Information(1)
PART NUMBERPACKAGEBODY SIZE (NOM)
OPA607SC70 (6)2.00 mm × 1.25 mm
SOT23 (5)2.90 mm × 1.60 mm
OPA2607SOIC (8) 4.90 mm × 3.91 mm
VSSOP (8) 3.00 mm × 3.00 mm
X2QFN (10) 1.50 mm × 2.00 mm
See the orderable addendum at the end of the data sheet for all available packages.
GUID-3D9012BE-D701-440B-A6B1-77B691DD296D-low.gifOPAx607 for Current-Sensing Application
GUID-71027D0A-1668-4E63-AB1E-D2CD81FFF7A4-low.gifOPAx607 for Transimpedance Application