SBOS342C December   2008  – November 2015 OPA659

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Related Operational Amplifier Products
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Feature Description
      1. 8.2.1 Input and ESD Protection
    3. 8.3 Device Functional Modes
      1. 8.3.1 Split-Supply Operation (±3.5 V to ±6.5 V)
      2. 8.3.2 Single-Supply Operation (7 V to 13 V)
  9. Application Information
    1. 9.1 Application Information
      1. 9.1.1 Wideband, Noninverting Operation
      2. 9.1.2 Wideband, Inverting Gain Operation
      3. 9.1.3 Operating Suggestions
        1. 9.1.3.1 Setting Resistor Values To Minimize Noise
        2. 9.1.3.2 Frequency Response Control
        3. 9.1.3.3 Driving Capacitive Loads
        4. 9.1.3.4 Distortion Performance
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Thermal Pad Information
    4. 11.4 Schematic and PCB Layout
    5. 11.5 Evaluation Module
      1. 11.5.1 Bill of Materials
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted).
MIN MAX UNIT
Power Supply Voltage VS+ to VS– ±6.5 V
Input Voltage ±VS V
Input Current 100 mA
Output Current 100 mA
Continuous Power Dissipation See Thermal Information
Operating Free Air Temperature, TA –40 85 °C
Maximum Junction Temperature, TJ 150 °C
Maximum Junction Temperature, TJ (continuous operation for long term reliability) 125 °C
Storage Temperature, Tstg –65 150 °C

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±4000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
Machine model (MM) ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VS Total supply voltage 7 12 13 V
TA Ambient temperature –40 25 85 °C

7.4 Thermal Information

THERMAL METRIC(1) OPA659 UNIT
DRB (VSON) DRV (SOT23)
8 PINS 5 PINS
RθJA Junction-to-ambient thermal resistance 56.3 209 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 63.7 124 °C/W
RθJB Junction-to-board thermal resistance 31.9 38.1 °C/W
ψJT Junction-to-top characterization parameter 3.2 15 °C/W
ψJB Junction-to-board characterization parameter 32.1 37.2 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 15.3 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

At RF = 0 Ω, G = 1 V/V, and RL = 100 Ω, TA = 25°C, VS = ±6 V unless otherwise noted.
PARAMETER TEST CONDITIONS TEST LEVEL(1) MIN TYP MAX UNIT
AC PERFORMANCE
Small-Signal Bandwidth VO = 200 mVPP, G = 1 V/V C 650 MHz
VO = 200 mVPP, G = 2 V/V C 335 MHz
VO = 200 mVPP, G = 5 V/V C 75 MHz
VO = 200 mVPP, G = 10 V/V C 35 MHz
Gain Bandwidth Product G > 10 V/V C 350 MHz
Bandwidth for 0.1dB Flatness G = 2 V/V, VO = 2VPP C 55 MHz
Large-Signal Bandwidth VO = 2 VPP, G = 1 V/V B 575 MHz
Slew Rate VO = 4-V Step, G = 1 V/V B 2550 V/μs
Rise and Fall Time VO = 4-V Step, G = 1 V/V C 1.3 ns
Settling Time to 1% VO = 4-V Step, G = 1 V/V C 8 ns
Pulse Response Overshoot VO = 4-V Step, G = 1 V/V C 12%
Harmonic Distortion, 2nd harmonic VO = 2 VPP, G = 1 V/V, f = 10 MHz C –79 dBc
Harmonic Distortion, 3rd harmonic VO = 2 VPP, G = 1 V/V, f = 10 MHz C –100 dBc
Intermodulation Distortion, 2nd intermodulation VO= 2 VPP Envelope (each tone 1 VPP),
G = 2 V/V, f1 = 10 MHz, f2 = 11 MHz
C –72 dBc
Intermodulation Distortion, 3rd intermodulation VO= 2 VPP Envelope (each tone 1 VPP),
G = 2 V/V, f1 = 10 MHz, f2 = 11 MHz
C –96 dBc
Input Voltage Noise f > 100 kHz C 8.9 nV/√Hz
Input Current Noise f < 10 MHz C 1.8 fA/√Hz
DC PERFORMANCE
Open-Loop Voltage Gain (AOL) TA = 25°C, VCM = 0 V, RL = 100 Ω A 52 58 dB
TA = –40°C to 85°C, VCM = 0 V, RL = 100 Ω B 49 55 dB
Input Offset Voltage TA = 25°C, VCM = 0 V A ±1 ±5 mV
TA = –40°C to 85°C, VCM = 0 V DRB package DRB package B ±1.5 ±7.6 mV
DBV package B ±1.5 ±8.9 mV
Average input-offset voltage drift(2) TA = –40°C to 85°C, VCM = 0 V DRB package B ±10 ±40 μV/°C
DBV package B ±10 ±60 μV/°C
Input Bias Current TA = 25°C, VCM = 0 V A ±10 ±50 pA
TA = 0°C to 70°C, VCM = 0 V B ±240 ±1200 pA
TA = –40°C to 85°C, VCM = 0 V B ±640 ±3200 pA
Average input bias current drift TA = 0°C to 70°C, VCM = 0 V B ±5 ±26 pA/°C
TA = –40°C to 85°C, VCM = 0 V B ±7 ±34 pA/°C
Input Offset Current TA = 25°C, VCM = 0 V A ±5 ±25 pA
TA = 0°C to 70°C, VCM = 0 V B ±120 ±600 pA
TA = –40°C to 85°C, VCM = 0 V B ±320 ±1600 pA
INPUT
Common-Mode Input Range(3) TA = 25°C A ±3 ±3.5 V
TA = –40°C to 85°C B ±2.87 ±3.37 V
Common-Mode Rejection Ratio TA = 25°C, VCM = ±0.5 V A 68 70 dB
TA = –40°C to 85°C, VCM = ±0.5 V B 64 66 dB
Input Impedance
Input impedance, differential C 1012 ∥ 1 Ω ∥ pF
Input impedance, common-mode C 1012 ∥ 2.5 Ω ∥ pF
OUTPUT
Output Voltage Swing TA = 25°C, No Load A ±4.6 ±4.8 V
RL = 100 Ω A ±3.8 ±4 V
TA = –40°C to 85°C No Load B ±4.45 ±4.65 V
RL = 100 Ω B ±3.65 ±3.85 V
Output Current, Sourcing, Sinking TA = 25°C A ±60 ±70 mA
TA = –40°C to 85°C B ±56 ±65 mA
Closed-Loop Output Impedance G = 1 V/V, f = 100 kHz C 0.04 Ω
POWER SUPPLY
Operating Voltage B ±3.5 ±6 ±6.5 V
Quiescent Current TA = 25°C A 30.5 32 33.5 mA
TA = –40°C to 85°C B 28.3 35.7 mA
Power-Supply Rejection Ratio (PSRR) TA = 25°C, VS = ±5.5 V to ±6.5 V A 58 62 dB
TA = –40°C to 85°C, VS = ±5.5 V to ±6.5 V A 56 60 dB
(1) Test levels: (A) 100% tested at 25°C. Over temperature limits set by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value only for information.
(2) DRB package only.
(3) Tested <6dB below minimum specified CMRR at ±CMIR limits.

7.6 Typical Characteristics

At VS = ±6 V, RF = 0 Ω, G = 1 V/V, and RL = 100 Ω, unless otherwise noted.

Table 1. Table of Graphs

TITLE FIGURE
Noninverting Small-Signal Frequency Response VO = 200 mVPP Figure 1
Noninverting Large-Signal Frequency Response VO = 2 VPP Figure 2
Noninverting Large-Signal Frequency Response VO = 6 VPP Figure 3
Inverting Small-Signal Frequency Response VO = 200 mVPP Figure 4
Inverting Large-Signal Frequency Response VO = 2 VPP Figure 5
Inverting Large-Signal Frequency Response VO = 6 VPP Figure 6
Noninverting Transient Response 0.5-V Step Figure 7
Noninverting Transient Response 2-V Step Figure 8
Noninverting Transient Response 5-V Step Figure 9
Inverting Transient Response 0.5-V Step Figure 10
Inverting Transient Response 2-V Step Figure 11
Inverting Transient Response 5-V Step Figure 12
Harmonic Distortion vs Frequency Figure 13
Harmonic Distortion vs Noninverting Gain Figure 14
Harmonic Distortion vs Inverting Gain Figure 15
Harmonic Distortion vs Load Resistance Figure 16
Harmonic Distortion vs Output Voltage Figure 17
Harmonic Distortion vs ±Supply Voltage Figure 18
Two-Tone, Second- and Third-Order Intermodulation Distortion vs Frequency Figure 19
Overdrive Recovery Gain = 2 V/V Figure 20
Overdrive Recovery Gain = –2 V/V Figure 21
Input-Referred Voltage Spectral Noise Density Figure 22
Common-Mode Rejection Ratio and Power-Supply Rejection Ratio vs Frequency Figure 23
Recommended RISO vs Capacitive Load Figure 24
Frequency Response vs Capacitive Load Figure 25
Open-Loop Gain and Phase Figure 26
Closed-Loop Output Impedance vs Frequency Figure 27
Transimpedance Gain vs Frequency CD = 10 pF Figure 28
Transimpedance Gain vs Frequency CD = 22 pF Figure 29
Transimpedance Gain vs Frequency CD = 47 pF Figure 30
Transimpedance Gain vs Frequency CD = 100 pF Figure 31
Maximum/Minimum ±VOUT vs RLOAD Figure 32
Slew Rate vs VOUT Step Figure 33
At VS = ±6 V, RF = 0 Ω, G = 1 V/V, and RL = 100 Ω, unless otherwise noted.
OPA659 tc_sm_sig_noninv_fqcy_resp_bos342.gif
Figure 1. Noninverting Small-Signal Frequency Response (VO = 200 mVPP)
OPA659 tc_lg_sig_noninv_fqcy_resp_6vpp_bos342.gif
Figure 3. Noninverting Large-Signal Frequency Response (VO = 6 VPP)
OPA659 tc_lg_sig_inv_fqcy_resp_2vpp_bos342.gif
Figure 5. Inverting Large-Signal Frequency Response
(VO = 2 VPP)
OPA659 tc_transient_noninv_05v_bos342.gif
Figure 7. Noninverting Transient Response (0.5-V Step)
OPA659 tc_transient_noninv_5v_bos342.gif
Figure 9. Noninverting Transient Response (5-V Step)
OPA659 tc_transient_inv_2v_bos342.gif
Figure 11. Inverting Transient Response (2-V Step)
OPA659 tc_hd_fqcy_bos342.gif
Figure 13. Harmonic Distortion vs Frequency
OPA659 tc_hd_inv_gain_10mhz_bos342.gif
Figure 15. Harmonic Distortion vs Inverting Gain at 10 MHz
OPA659 hd_vout_10mhz_bos342.gif
Figure 17. Harmonic Distortion vs Output Voltage
OPA659 tc_2tone_hd2_3_imd_fqcy_bos342.gif
Figure 19. Two-Tone, Second- and Third-Order IMD vs Frequency
OPA659 tc_overdrive_2v_gain_neg_bos342.gif
Figure 21. Overdrive Recovery (Gain = –2 V/V)
OPA659 tc_cmrr_psrr_fqcy_bos342.gif
Figure 23. Common-Mode Rejection Ratio and Power-Supply Rejection Ratio vs Frequency
OPA659 tc_fqcy_resp_cload_bos342.gif
Figure 25. Frequency Response vs Capacitive Load
(RLOAD = 1 kΩ)
OPA659 tc_output_imped_fqcy_bos342.gif
Figure 27. Closed-Loop Output Impedance vs Frequency
OPA659 ximped_gain_fqcy_22_bos342.gif
Figure 29. Transimpedance Gain vs Frequency (CD = 22 pF)
OPA659 ximped_gain_fqcy_100_bos342.gif
Figure 31. Transimpedance Gain vs Frequency
(CD = 100 pF)
OPA659 tc_slew_rate_vout_bos342.gif
Figure 33. Slew Rate vs VOUT Step
OPA659 tc_lg_sig_noninv_fqcy_resp_2vpp_bos342.gif
Figure 2. Noninverting Large-Signal Frequency Response (VO = 2 VPP)
OPA659 tc_sm_sig_inv_fqcy_resp_bos342.gif
Figure 4. Inverting Small-Signal Frequency Response
(VO = 200 mVPP)
OPA659 tc_lg_sig_inv_fqcy_resp_6vpp_bos342.gif
Figure 6. Inverting Large-Signal Frequency Response
(VO = 6 VPP)
OPA659 tc_transient_noninv_2v_bos342.gif
Figure 8. Noninverting Transient Response (2-V Step)
OPA659 tc_transient_inv_05v_bos342.gif
Figure 10. Inverting Transient Response (0.5-V Step)
OPA659 tc_transient_inv_5v_bos342.gif
Figure 12. Inverting Transient Response (5-V Step)
OPA659 tc_hd_noninv_gain_10mhz_bos342.gif
Figure 14. Harmonic Distortion vs Noninverting Gain at
10 MHz
OPA659 hd_load_10mhz_bos342.gif
Figure 16. Harmonic Distortion vs Load Resistance at
10 MHz
OPA659 tc_hd_ps_bos342.gif
Figure 18. Harmonic Distortion vs ±Supply Voltage
OPA659 tc_overdrive_2v_gain_pos_bos342.gif
Figure 20. Overdrive Recovery (Gain = 2 V/V)
OPA659 tc_input_ref_vn_sd_bos342.gif
Figure 22. Input-Referred Voltage and Current Noise Density
OPA659 tc_riso_cap_load_bos342.gif
Figure 24. Recommended RISOvs Capacitive Load
(RLOAD = 1 kΩ)
OPA659 tc_open_loop_gain_phase_bos342.gif
Figure 26. Open-Loop Gain and Phase
OPA659 ximped_gain_fqcy_10_bos342.gif
Figure 28. Transimpedance Gain vs Frequency (CD = 10 pF)
OPA659 ximped_gain_fqcy_47_bos342.gif
Figure 30. Transimpedance Gain vs Frequency (CD = 47 pF)
OPA659 vout_max_min_rload_bos342.gif
Figure 32. Maximum/Minimum ±VOUTvs RLOAD