SBOS223H December   2001  – October 2024 OPA690

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics OPA690IDBV, VS = ±5 V
    6. 6.6  Electrical Characteristics OPA690IDBV, VS = 5 V
    7. 6.7  Electrical Characteristics OPA690ID, VS = ±5 V
    8. 6.8  Electrical Characteristics OPA690ID, VS = 5 V
    9. 6.9  Typical Characteristics: OPA690IDBV, VS = ±5V
    10. 6.10 Typical Characteristics: OPA690IDBV, VS = 5V
    11. 6.11 Typical Characteristics: OPA690ID, VS = ±5V
    12. 6.12 Typical Characteristics: OPA690ID, VS = 5V
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Wideband Voltage-Feedback Operation
      2. 7.3.2 Input and ESD Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Disable Operation
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Bandwidth Versus Gain: Noninverting Operation
      2. 8.1.2 Inverting Amplifier Operation
      3. 8.1.3 Optimizing Resistor Values
      4. 8.1.4 Output Current and Voltage
      5. 8.1.5 Driving Capacitive Loads
      6. 8.1.6 Distortion Performance
      7. 8.1.7 Noise Performance
      8. 8.1.8 DC Accuracy and Offset Control
      9. 8.1.9 Thermal Analysis
    2. 8.2 Typical Applications
      1. 8.2.1 High-Performance DAC Transimpedance Amplifier
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
      2. 8.2.2 Single-Supply Active Filters
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Application Curve
      3. 8.2.3 High-Power Line Driver
        1. 8.2.3.1 Design Requirements
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Macromodels and Applications Support
      2. 9.1.2 Demonstration Fixtures
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
  • DBV|6
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Input and ESD Protection

The OPA690 is built using a very high-speed complementary bipolar process. The internal junction breakdown voltages are relatively low for these very small geometry devices. These breakdowns are reflected in Section 6.1. All device pins are protected with internal ESD protection diodes to the power supplies. Figure 7-3 shows the internal ESD protection.

OPA690 Internal
                    ESD Protection Figure 7-3 Internal ESD Protection

These diodes also provide moderate protection to input overdrive voltages greater than the supplies. The protection diodes can typically support 10 mA of continuous current. Where higher currents are possible (for example, in systems with ±15-V supply parts driving into the OPA690), add current-limiting series resistors into the two inputs. Keep these resistor values as low as possible, because high values degrade both noise performance and frequency response.