SBOS223H December   2001  – October 2024 OPA690

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics OPA690IDBV, VS = ±5 V
    6. 6.6  Electrical Characteristics OPA690IDBV, VS = 5 V
    7. 6.7  Electrical Characteristics OPA690ID, VS = ±5 V
    8. 6.8  Electrical Characteristics OPA690ID, VS = 5 V
    9. 6.9  Typical Characteristics: OPA690IDBV, VS = ±5V
    10. 6.10 Typical Characteristics: OPA690IDBV, VS = 5V
    11. 6.11 Typical Characteristics: OPA690ID, VS = ±5V
    12. 6.12 Typical Characteristics: OPA690ID, VS = 5V
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Wideband Voltage-Feedback Operation
      2. 7.3.2 Input and ESD Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Disable Operation
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Bandwidth Versus Gain: Noninverting Operation
      2. 8.1.2 Inverting Amplifier Operation
      3. 8.1.3 Optimizing Resistor Values
      4. 8.1.4 Output Current and Voltage
      5. 8.1.5 Driving Capacitive Loads
      6. 8.1.6 Distortion Performance
      7. 8.1.7 Noise Performance
      8. 8.1.8 DC Accuracy and Offset Control
      9. 8.1.9 Thermal Analysis
    2. 8.2 Typical Applications
      1. 8.2.1 High-Performance DAC Transimpedance Amplifier
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
      2. 8.2.2 Single-Supply Active Filters
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Application Curve
      3. 8.2.3 High-Power Line Driver
        1. 8.2.3.1 Design Requirements
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Macromodels and Applications Support
      2. 9.1.2 Demonstration Fixtures
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
  • DBV|6
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The OPA690 device represents a major step forward in unity-gain stable, voltage-feedback op amps. A new input architecture provides slew rate and full-power bandwidth previously found only in wide-band, current-feedback op amps. A new output stage architecture delivers 215mA of current with a minimal headroom requirement. These capabilities combine to give exceptional slew rate of 1900V/µs into a 100Ω load. The ultra-fast settling time of 13ns makes the OPA690 an excellent choice for fast sampling systems such as high-speed ADC drivers, high-speed imaging systems, and current DAC transimpedance amplifier.

The low quiescent current of 6.1mA makes the OPA690 an excellent choice in portable or battery-powered application. System power can be reduced further using the optional disable control pin (DIS). Leaving DIS open, or holding DIS high, operates the OPA690 normally. If DIS is pulled low, the OPA690 supply current drops to less than 100µA while the output goes to a high-impedance state.

Package Information
PART NUMBER(1) PACKAGE(2) PACKAGE SIZE(3)
OPA690 D (SOIC, 8) 4.9mm × 6mm
DBV (SOT-23, 6) 3mm × 3mm
See Section 4.
For more information, see Section 11.
The package size (length × width) is a nominal value and includes pins, where applicable.

 

OPA690 Single-Supply, Gain of 4V/V, High-Frequency Active Filter Single-Supply, Gain of 4V/V, High-Frequency Active Filter