SBOSA14A April   2023  – November 2023 OPA814

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics:
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Input and ESD Protection
      2. 7.3.2 FET-Input Architecture With Wide Gain-Bandwidth Product
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Wideband, High-Input Impedance DAQ Front-End
      2. 8.1.2 Wideband, Transimpedance Design Using the OPA814
    2. 8.2 Typical Application
      1. 8.2.1 High-Input-Impedance, 180-MHz, Digitizer Front-End Amplifier
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Thermal Considerations
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
  • DBV|5
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The OPA814 is a high-voltage, unity-gain-stable, 250-MHz gain bandwidth product (GBWP), voltage-feedback operational amplifier (op amp) featuring a 5.3‑nV/√Hz, low-noise JFET input stage. The low offset voltage (250 μV, maximum), offset voltage drift (3.5 μV/°C, maximum), and unity gain bandwidth of 600 MHz makes this device an excellent choice for high input impedance, high-speed data acquisition front-ends. The high-voltage capability combined with the 750‑V/µs slew rate enables applications needing wide output swings (9 VPP at VS = 12 V) for high-frequency signals such as those often found in medical instrumentation, optical front-ends, test, and measurement applications. The low-noise JFET input with picoamperes of bias current makes this device attractive in high-gain TIA applications, and in test and measurement front-ends.

The OPA814 is built using TI's proprietary high-voltage, high-speed, complementary bipolar SiGe process.