Achieving optimum performance with a high-frequency amplifier like the OPA855-Q1 requires careful attention to board layout parasitics and external component types. Recommendations that optimize performance include:
- Minimize parasitic capacitance from the signal I/O pins to ac ground. Parasitic capacitance on the output and inverting input pins can cause instability. To reduce unwanted capacitance, cut out the power and ground traces under the signal input and output pins. Otherwise, ground and power planes must be unbroken elsewhere on the board. When configuring the amplifier as a TIA, if the required feedback capacitor is less than 0.15 pF, consider using two series resistors, each of half the value of a single resistor in the feedback loop to minimize the parasitic capacitance from the resistor.
- Minimize the distance (less than 0.25-in) from
the power-supply pins to high-frequency bypass capacitors. Use
high-quality, 100-pF to 0.1-µF, C0G and NPO-type decoupling capacitors with
voltage ratings at least three times greater than the amplifiers maximum power
supplies. This configuration makes sure that there is a low-impedance path to
the amplifiers power-supply pins across the amplifiers gain bandwidth
specification. At the device pins, do not allow the ground and power plane
layout to be in close proximity to the signal I/O pins. Avoid narrow power and
ground traces to minimize inductance between the pins and the decoupling
capacitors. The power-supply connections must always be decoupled with these
capacitors. Larger (2.2-µF to 6.8-µF) decoupling capacitors that are effective
at lower frequency must be used on the supply pins. Place these decoupling
capacitors further from the device. Share the decoupling capacitors among
several devices in the same area of the printed circuit board (PCB).
- Careful selection and placement of external components preserves the high-frequency performance of the OPA855-Q1. Use low-reactance resistors. Surface-mount resistors work best and allow a tighter overall layout. Never use wirewound resistors in a high-frequency application. Because the output pin and inverting input pin are the most sensitive to parasitic capacitance, always position the feedback and series output resistor, if any, as close to the output pin as possible. Place other network components (such as noninverting input termination resistors) close to the package. Even with a low parasitic capacitance shunting the external resistors, high resistor values create significant time constants that can degrade performance. When configuring the OPA855-Q1 as a voltage amplifier, keep resistor values as low as possible and consistent with load driving considerations. Decreasing the resistor values keeps the resistor noise terms low and minimizes the effect of the parasitic capacitance. However, lower resistor values increase the dynamic power consumption because RF and RG become part of the output load network of the amplifier.