SBOSA93C May   2023  – June 2024 OPT4001-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Timing Diagram
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Spectral Matching to Human Eye
      2. 6.3.2 Automatic Full-Scale Range Setting
      3. 6.3.3 Error Correction Code (ECC) Features
        1. 6.3.3.1 Output Sample Counter
        2. 6.3.3.2 Output CRC
      4. 6.3.4 Output Register FIFO
      5. 6.3.5 Threshold Detection
    4. 6.4 Device Functional Modes
      1. 6.4.1 Modes of Operation
      2. 6.4.2 Interrupt Modes of Operation
      3. 6.4.3 Light Range Selection
      4. 6.4.4 Selecting Conversion Time
      5. 6.4.5 Light Measurement in Lux
      6. 6.4.6 Threshold Detection Calculations
      7. 6.4.7 Light Resolution
    5. 6.5 Programming
      1. 6.5.1 I2C Bus Overview
        1. 6.5.1.1 Serial Bus Address
        2. 6.5.1.2 Serial Interface
      2. 6.5.2 Writing and Reading
        1. 6.5.2.1 High-Speed I2C Mode
        2. 6.5.2.2 Burst Read Mode
        3. 6.5.2.3 General-Call Reset Command
        4. 6.5.2.4 SMBus Alert Response (USON Variant)
  8. Register Maps
    1. 7.1 Register Descriptions
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Electrical Interface
        1. 8.2.1.1 Design Requirements
          1. 8.2.1.1.1 Optical Interface
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Optomechanical Design (PicoStar Variant)
          2. 8.2.1.2.2 Optomechanical Design (USON Variant)
        3. 8.2.1.3 Application Curves (PicoStar Variant)
        4. 8.2.1.4 Application Curves (USON Variant)
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
        1. 8.5.1.1 Soldering and Handling Recommendations (PicoStar Variant)
          1. 8.5.1.1.1 Solder Paste
          2. 8.5.1.1.2 Package Placement
          3. 8.5.1.1.3 Reflow Profile
          4. 8.5.1.1.4 Special Flexible Printed-Circuit Board (FPCB) Recommendations
          5. 8.5.1.1.5 Rework Process
        2. 8.5.1.2 Soldering and Handling Recommendations (USON Variant)
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DNP|6
  • YMN|4
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The OPT4001-Q1 is a light-to-digital sensor (single-chip lux meter) that measures the intensity of visible light. To measure accurate light intensity, a specially engineered filter on the device tightly matches the photopic response of the human eye and rejects the near-infrared component from common light sources. The output of the OPT4001-Q1 is semi-logarithmic with nine binary logarithmic full-scale light ranges along with a highly linear response within each range, bringing capability to measure from 312.5µlux to 83klux for the PicoStar™ variant and 400µlux to 107klux for the USON variant. This capability allows the light sensor to have a 28-bit effective dynamic range. The built-in automatic range-selection logic dynamically adjusts the device gain settings based on the light level, providing the best possible resolution in all conditions without user input.

The engineered optical filter on the OPT4001-Q1 provides strong near infrared (NIR) rejection. This filter aids in maintaining high accuracy when the sensor is placed under dark glass for aesthetic reasons.

The OPT4001-Q1 is designed for systems that require light level detection to enhance user experience and typically replaces low-accuracy photodiodes, photoresistors, and other ambient light sensors with underwhelming human eye matching and near-infrared rejection.

The OPT4001-Q1 can be configured to operate with light conversion times from 600μs to 800ms in 12 steps, providing system flexibility based on application need. Conversion time includes the light integration time and analog-to-digital (ADC) conversion time. Measurement resolution is determined by a combination of light intensity and integration time, effectively providing the capability to measure down to 312.5µlux of light intensity changes for the PicoStar™ variant and 400µlux of light intensity changes for the USON variant.

Digital operation is flexible for system integration. Measurements can be either continuous or triggered in one shot with register writes or a hardware pin (hardware pin only available on USON variant). The device features a threshold detection logic, which allows the processor to sleep while the sensor waits for an appropriate wake-up event to report through the interrupt pin (only on USON variant).

The sensor reports a digital output representing the light level over an I2C- and SMBus-compatible, two-wire serial interface. An internal first-in-first-out (FIFO) on the output registers is available to read out measurements from the sensor at a slower pace while still preserving all data captured by the device. The OPT4001-Q1 also supports I2C burst mode, thus helping the host read data from the FIFO with minimal I2C overhead.

The low power consumption and low power-supply voltage capability of the OPT4001-Q1 helps enhance the battery life of battery-powered systems.