SBOSA93C May   2023  – June 2024 OPT4001-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Timing Diagram
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Spectral Matching to Human Eye
      2. 6.3.2 Automatic Full-Scale Range Setting
      3. 6.3.3 Error Correction Code (ECC) Features
        1. 6.3.3.1 Output Sample Counter
        2. 6.3.3.2 Output CRC
      4. 6.3.4 Output Register FIFO
      5. 6.3.5 Threshold Detection
    4. 6.4 Device Functional Modes
      1. 6.4.1 Modes of Operation
      2. 6.4.2 Interrupt Modes of Operation
      3. 6.4.3 Light Range Selection
      4. 6.4.4 Selecting Conversion Time
      5. 6.4.5 Light Measurement in Lux
      6. 6.4.6 Threshold Detection Calculations
      7. 6.4.7 Light Resolution
    5. 6.5 Programming
      1. 6.5.1 I2C Bus Overview
        1. 6.5.1.1 Serial Bus Address
        2. 6.5.1.2 Serial Interface
      2. 6.5.2 Writing and Reading
        1. 6.5.2.1 High-Speed I2C Mode
        2. 6.5.2.2 Burst Read Mode
        3. 6.5.2.3 General-Call Reset Command
        4. 6.5.2.4 SMBus Alert Response (USON Variant)
  8. Register Maps
    1. 7.1 Register Descriptions
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Electrical Interface
        1. 8.2.1.1 Design Requirements
          1. 8.2.1.1.1 Optical Interface
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Optomechanical Design (PicoStar Variant)
          2. 8.2.1.2.2 Optomechanical Design (USON Variant)
        3. 8.2.1.3 Application Curves (PicoStar Variant)
        4. 8.2.1.4 Application Curves (USON Variant)
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
        1. 8.5.1.1 Soldering and Handling Recommendations (PicoStar Variant)
          1. 8.5.1.1.1 Solder Paste
          2. 8.5.1.1.2 Package Placement
          3. 8.5.1.1.3 Reflow Profile
          4. 8.5.1.1.4 Special Flexible Printed-Circuit Board (FPCB) Recommendations
          5. 8.5.1.1.5 Rework Process
        2. 8.5.1.2 Soldering and Handling Recommendations (USON Variant)
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DNP|6
  • YMN|4
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Electrical Characteristics

all specifications at TA = 25°C, VDD = 3.3 V, 800-ms conversion time (CONVERSION_TIME = 0xB), automatic full-scale range, white LED, and normal-angle incidence of light (unless otherwise specified)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OPTICAL
PicoStar™ Variant
Peak irradiance spectral responsivity 540 nm
EvLSB Resolution Lowest auto gain range, 800-ms conversion time 312.5 µlux
Lowest auto gain range, 100-ms conversion time 2.5 mlux
EvFS Full-scale illuminance 83886 lux
Angular response (FWHM) 96 °
USON Variant
Peak irradiance spectral responsivity 550 nm
EvLSB Resolution Lowest auto gain range, 800-ms conversion time 400 µlux
Lowest auto gain range, 100-ms conversion time 3.2 mlux
EvFS Full-scale illuminance 107374 lux
Angular response (FWHM) 120 °
Common Specifications
Effective MANTISSA bits (register R_MSB and R_LSB) Dependent on conversion time selected  (register CT) 9 20 bits
Exponent bits (register E)  Denotes the full-scale range  4 bits
Ev Measurement output result 2000 lux input(1) 1800 2000 2200 lux
tconv Light conversion-time(4) Minimum selectable (CONVERSION_TIME = 0x0) 600 µs
Maximum selectable (CONVERSION_TIME = 0xB) 800 ms
Light source variation (incandescent, halogen, fluorescent) Bare device, no cover glass 4 %
Linearity EXPONENT > 0,100-ms conversion time CT=8 2 %
EXPONENT = 0,100-ms conversion time CT=8 5
EvIR Infrared response 850-nm LED input 0.2 %
Relative accuracy between gain ranges (2) 0.4 %
Drift across temperature Visible light, input illuminance = 2000 lux 0.01 %/°C
Dark measurement 0 10 mlux
PSRR Power-supply rejection ratio(3) VDD at 3.6 V and 1.6 V 0.1 %/V
POWER SUPPLY
VDD Power supply 1.6 3.6 V
VI2C Power supply for I2C pullup resistor I2C pullup resistor, VDD ≤ VI2C 1.6 5.5 V
IQACTIVE Active current Dark 22 µA
Full-scale lux 30
IQ Quiescent current Dark 1.6 µA
Full-scale lux 2
POR Power-on-reset threshold 0.8 V
DIGITAL
CIO I/O pin capacitance 3 pF
tss Trigger to sample start Low-power shutdown mode 0.5 ms
VIL Low-level input voltage (SDA, SCL, and ADDR) 0 0.3 × VDD V
VIH High-level input voltage (SDA, SCL, and ADDR) 0.7 × VDD 5.5 V
IIL Low-level input current (SDA, SCL, and ADDR) 0.01 0.25(5) µA
VOL Low-level output voltage (SDA and INT) IOL = 3mA 0.32 V
IZH Output logic high, high-Z leakage current (SDA, INT) Measured with VDD at pin 0.01 0.25(5) µA
TEMPERATURE
Specified temperature range PicoStar™ variant –40 125 °C
USON variant –40 105
Tested with the white LED calibrated to 2000 lux.
Characterized by measuring fixed near-full-scale light levels on the higher adjacent full-scale range setting.
PSRR is the percent change of the measured lux output from the current value, divided by the change in power supply voltage, as characterized by results from 3.6-V and 1.6-V power supplies.
The conversion time, from start of conversion until the data are ready to be read, is the integration time plus the analog-to-digital conversion time.
The specified leakage current is dominated by the production test equipment limitations. Typical values are much smaller.