SBASA67 June   2023 OPT4060

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Description (continued)
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Infrared Light Rejection
      2. 8.3.2 Automatic Full-Scale Range Setting
      3. 8.3.3 Output Register CRC and Counter
        1. 8.3.3.1 Output Sample Counter
        2. 8.3.3.2 Output CRC
        3. 8.3.3.3 Threshold Detection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Modes of Operation
      2. 8.4.2 Interrupt Modes of Operation
      3. 8.4.3 Light Range Selection
      4. 8.4.4 Selecting Conversion Time
      5. 8.4.5 Light and Color Measurement
        1. 8.4.5.1 Determining ADC Codes for Each Channel
        2. 8.4.5.2 Lux and Color Calculations
        3. 8.4.5.3 Threshold Detection Calculations
      6. 8.4.6 Light Resolution
    5. 8.5 Programming
      1. 8.5.1 I2C Bus Overview
        1. 8.5.1.1 Serial Bus Address
        2. 8.5.1.2 Serial Interface
      2. 8.5.2 Writing and Reading
        1. 8.5.2.1 High-Speed I2C Mode
        2. 8.5.2.2 Burst Read Mode
        3. 8.5.2.3 General-Call Reset Command
        4. 8.5.2.4 SMBus Alert Response
    6. 8.6 Register Maps
      1. 8.6.1 Register Map
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Electrical Interface
        1. 9.2.1.1 Design Requirements
          1. 9.2.1.1.1 Optical Interface
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Optomechanical Design
        3. 9.2.1.3 Application Curve
    3. 9.3 Best Design Practices
    4. 9.4 Power Supply Recommendations
    5. 9.5 Layout
      1. 9.5.1 Layout Guidelines
      2. 9.5.2 Layout Example
      3. 9.5.3 Soldering and Handling Recommendations
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Threshold Detection Calculations

Threshold result registers THRESHOLD_H_RESULT and THRESHOLD_H_RESULT are 12 bits, while threshold exponent registers THRESHOLD_H_EXPONENT and THRESHOLD_L_EXPONENT are four bits. The threshold is compared at linear ADC_CODES_CHx, therefore the threshold registers are padded with zeros internally as shown to compare with the ADC_CODES_CHx

Equation 12. ADC_CODES_TH = THRESHOLD_H_RESULT << (8 + THRESHOLD_H_EXPONENT)

or

Equation 13. ADC_CODES_TH = THRESHOLD_H_RESULT x 2^(8 + THRESHOLD_H_EXPONENT)

and

Equation 14. ADC_CODES_TL = THRESHOLD_L_RESULT << (8 + THRESHOLD_L_EXPONENT)

or

Equation 15. ADC_CODES_TL=THRESHOLD_L_RESULT x 2^(8 + THRESHOLD_L_EXPONENT)

Threshold are then compared as shown to detect Fault events.

Equation 16. If ADC_CODES_CHx < ADC_CODES_TL a Fault Low is detected

and

Equation 17. If ADC_CODES_CHx > ADC_CODES_TH a Fault High is detected

Based on the FAULT_COUNT register setting, with consecutive Fault High or Fault Low events, respective FLAG_H and FLAG_L registers are set. Clearly understanding the difference between THRESHOLD_H_EXPONENT, THRESHOLD_H_RESULT, THRESHOLD_L_EXPONENT, THRESHOLD_L_RESULT and the output registers is important to be able to set appropriate threshold based on application needs. See Interrupt Modes of Operation for more information.