SCPS144C May 2006 – May 2015 P82B96
PRODUCTION DATA.
MIN | MAX | UNIT | |||
---|---|---|---|---|---|
VCC | Supply voltage on VCC pin | –0.3 | 18 | V | |
VI | Voltage on buffered input | Sx or Sy (SDA or SCL) | –0.3 | 18 | V |
Rx or Ry | –0.3 | 18 | |||
VO | Voltage on buffered output | Sx or Sy (SDA or SCL) | –0.3 | 18 | V |
Tx or Ty | –0.3 | 18 | |||
IO | Continuous output current | Sx or Sy | 250 | mA | |
Tx or Ty | 250 | ||||
ICC | Continuous current through VCC or GND | 250 | mA | ||
TA | Operating free-air temperature | –40 | 85 | °C | |
Tstg | Storage temperature | –55 | 125 | °C |
VALUE | UNIT | |||
---|---|---|---|---|
V(ESD) | Electrostatic discharge | Human Body Model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±3500 | V |
Charged-Device Model (CDM), per JEDEC specification JESD22-C101(2) | ±1000 | |||
Machine Model (MM), per JEDEC specification JESD22-A115-A | ±200 |
MIN | MAX | UNIT | ||||
---|---|---|---|---|---|---|
VCC | Supply voltage | 2 | 15 | V | ||
IOL | Low-level output current | Sx, Sy | VSx, VSy = 1 V, VRx, VRy ≤ 0.42 V | 3 | mA | |
Tx, Ty | VSx, VSy = 0.4 V, VTx, VTy = 0.4 V | 30 | ||||
VIOmax | Maximum input/output voltage level | Sx, Sy | VTx, VTy = 0.4 V | 15 | V | |
Tx, Ty | VSx, VSy = 0.4 V | 15 | ||||
VILdiff | Low-level input voltage difference | Sx, Sy | 0.4 | V | ||
TA | Operating free-air temperature | –40 | 85 | °C |
THERMAL METRIC(1) | P82B96 | UNIT | ||||
---|---|---|---|---|---|---|
D (SOIC) | DGK (VSSOP) | P (PDIP) | PW (TSSOP) | |||
8 PINS | 8 PINS | 8 PINS | 8 PINS | |||
RθJA | Junction-to-ambient thermal resistance | 109.1 | 174.3 | 53.5 | 173.5 | °C/W |
RθJC(top) | Junction-to-case (top) thermal resistance | 61.6 | 63 | 44.4 | 57.6 | °C/W |
RθJB | Junction-to-board thermal resistance | 48.6 | 94.2 | 30.6 | 101.8 | °C/W |
ψJT | Junction-to-top characterization parameter | 19.6 | 8.1 | 22.9 | 5.3 | °C/W |
ψJB | Junction-to-board characterization parameter | 48.2 | 92.8 | 30.5 | 100.2 | °C/W |
PARAMETER | TEST CONDITIONS |
TA = 25°C | TA = –40°C to 85°C | UNIT | ||||||
---|---|---|---|---|---|---|---|---|---|---|
MIN | TYP(1) | MAX | MIN | MAX | ||||||
ΔV/ΔTIN | Temperature coefficient of input thresholds | Sx, Sy | –2 | mV/°C | ||||||
VOL | Low-level output voltage | Sx, Sy | ISx, ISy = 3 mA | 0.8 | 0.88 | 1 | See (2) | V | ||
ISx, ISy = 0.2 mA | 0.67 | 0.73 | 0.79 | See (2) | ||||||
ΔV/ΔTOUT | Temperature coefficient of output low levels(3) | Sx, Sy | ISx, ISy = 0.2 mA | –1.8 | mV/°C | |||||
ICC | Quiescent supply current | Sx = Sy = VCC | 0.9 | 1.8 | 2 | mA | ||||
ΔICC | Additional supply current per pin low | Tx, Ty | 1.7 | 2.75 | 3 | mA | ||||
IIOS | Dynamic output sink capability on I2C bus | Sx, Sy | VSx, VSy > 2 V, VRx, VRy = low | 7 | 18 | 5.5 | mA | |||
Leakage current on I2C bus | VSx, VSy = 2.5 V, VRx, VRy = high | 0.1 | 1 | 1 | μA | |||||
IIOT | Dynamic output sink capability on buffered bus | Tx, Ty | VTx, VTy > 1 V, VSx, VSy = low on I2C bus = 0.4 V |
60 | 100 | 60 | mA | |||
Leakage current on buffered bus | VTx, VTy = VCC = 2.5 V, VSx, VSy = high | 0.1 | 1 | 1 | μA | |||||
II | Input current from I2C bus | Sx, Sy | Bus low, VRx, VRy = high | –1 | 1 | μA | ||||
Input current from buffered bus | Rx, Ry | Bus low, VRx, VRy = 0.4 V | –1 | 1 | ||||||
Leakage current on buffered bus input | VRx, VRy = VCC | 1 | 1.5 | |||||||
VIT | Input threshold | Sx, Sy | Input logic level high threshold(4) on normal I2C bus | 0.65 | 0.7 | See (2) | V | |||
Input logic level low threshold(4) on normal I2C bus | 0.6 | 0.65 | See (2) | |||||||
Rx, Ry | Input logic level high | 0.58 x VCC | 0.58 x VCC | |||||||
Input threshold | 0.5 x VCC | |||||||||
Input logic level low | 0.42 x VCC | 0.42 x VCC | ||||||||
VIOdiff | Input/output logic level difference(5) | Sx, Sy | (VSx output low at 3 mA) – (VSx input high max) for I2C applications | 100 | 150 | 100 | mV | |||
VIOrel | VCC voltage at which all buses are released | Sx, Sy Tx, Ty |
Sx, Sy are low, VCC ramping, voltage on Tx, Ty lowered until released | 1 | 1 | V | ||||
ΔV/ΔTREL | Temperature coefficient of release voltage | –4 | mV/°C | |||||||
Cin | Input capacitance | Rx, Ry | 2.5 | 4 | 4 | pF |
PARAMETER | TEST CONDITIONS | TA = 25°C | TA = –40°C to 85°C | UNIT | |||||
---|---|---|---|---|---|---|---|---|---|
MIN | TYP(1) | MAX | MIN | MAX | |||||
ΔV/ΔTIN | Temperature coefficient of input thresholds | Sx, Sy | –2 | mV/°C | |||||
VOL | Low-level output voltage | Sx, Sy | ISx, ISy = 3 mA | 0.8 | 0.88 | 1 | See (2) | V | |
ISx, ISy = 0.2 mA | 0.67 | 0.73 | 0.79 | See (2) | |||||
ΔV/ΔTOUT | Temperature coefficient of output low levels(3) | Sx, Sy | ISx, ISy = 0.2 mA | –1.8 | mV/°C | ||||
ICC | Quiescent supply current | Sx = Sy = VCC | 0.9 | 1.8 | 2 | mA | |||
ΔICC | Additional supply current per pin low | Tx, Ty | 1.7 | 2.75 | 3 | mA | |||
IIOS | Dynamic output sink capability on I2C bus | Sx, Sy | VSx, VSy > 2 V, VRx, VRy = low | 7 | 18 | 5.7 | mA | ||
Leakage current on I2C bus | VSx, VSy = 5 V, VRx, VRy = high | 0.1 | 1 | 1 | μA | ||||
IIOT | Dynamic output sink capability on buffered bus | Tx, Ty | VTx, VTy > 1 V, VSx, VSy = low on I2C bus = 0.4 V |
60 | 100 | 60 | mA | ||
Leakage current on buffered bus | VTx, VTy = VCC = 3.3 V, VSx, VSy = high | 0.1 | 1 | 1 | μA | ||||
II | Input current from I2C bus | Sx, Sy | Bus low, VRx, VRy = high | –1 | 1 | μA | |||
Input current from buffered bus | Rx, Ry | Bus low, VRx, VRy = 0.4 V | –1 | 1 | |||||
Leakage current on buffered bus input |
VRx, VRy = VCC | 1 | 1.5 | ||||||
VIT | Input threshold | Sx, Sy | Input logic-level high threshold(4) on normal I2C bus | 0.65 | 0.7 | See (2) | V | ||
Input logic-level low threshold(4) on normal I2C bus | 0.6 | 0.65 | See (2) | ||||||
Rx, Ry | Input logic level high | 0.58 x VCC | 0.58 x VCC | ||||||
Input threshold | 0.5 x VCC | ||||||||
Input logic level low | 0.42 x VCC | 0.42 x VCC | |||||||
VIOdiff | Input/output logic level difference(4) | Sx, Sy | (VSx output low at 3 mA) – (VSx input high max) for I2C applications | 100 | 150 | 100 | mV | ||
VIOrel | VCC voltage at which all buses are released | Sx, Sy Tx, Ty |
Sx, Sy are low, VCC ramping, voltage on Tx, Ty lowered until released | 1 | 1 | V | |||
ΔV/ΔTREL | Temperature coefficient of release voltage | –4 | mV/°C | ||||||
Cin | Input capacitance | Rx, Ry | 2.5 | 4 | 4 | pF |
PARAMETER | TEST CONDITIONS | TA = 25°C | TA = –40°C to 85°C | UNIT | |||||
---|---|---|---|---|---|---|---|---|---|
MIN | TYP(4) | MAX | MIN | MAX | |||||
ΔV/ΔTIN | Temperature coefficient of input thresholds | Sx, Sy | –2 | mV/°C | |||||
VOL | Low-level output voltage | Sx, Sy | ISx, ISy = 3 mA | 0.8 | 0.88 | 1 | See (5) | V | |
ISx, ISy = 0.2 mA | 0.67 | 0.73 | 0.79 | See (5) | |||||
ΔV/ΔTOUT | Temperature coefficient of output low levels(2) | Sx, Sy | ISx, ISy = 0.2 mA | –1.8 | mV/°C | ||||
ICC | Quiescent supply current | Sx = Sy = VCC | 0.9 | 1.8 | 2 | mA | |||
ΔICC | Additional supply current per pin low | Tx, Ty | 1.7 | 2.75 | 3 | mA | |||
IIOS | Dynamic output sink capability on I2C bus | Sx, Sy | VSx, VSy > 2 V, VRx, VRy = low | 7 | 18 | 6 | mA | ||
Leakage current on I2C bus | VSx, VSy = 5 V, VRx, VRy = high | 0.1 | 1 | 1 | μA | ||||
IIOT | Dynamic output sink capability on buffered bus | Tx, Ty | VTx, VTy > 1 V, VSx, VSy = low on I2C bus = 0.4 V |
60 | 100 | 60 | mA | ||
Leakage current on buffered bus | VTx, VTy = VCC = 5 V, VSx, VSy = high | 0.1 | 1 | 1 | μA | ||||
II | Input current from I2C bus | Sx, Sy | Bus low, VRx, VRy = high | –1 | 1 | μA | |||
Input current from buffered bus | Rx, Ry | Bus low, VRx, VRy = 0.4 V | –1 | 1 | |||||
Leakage current on buffered bus input |
VRx, VRy = VCC | 1 | 1.5 | ||||||
VIT | Input threshold | Sx, Sy | Input logic-level high threshold(3) on normal I2C bus | 0.65 | 0.7 | See (5) | V | ||
Input logic-level low threshold(3) on normal I2C bus | 0.6 | 0.65 | See (5) | ||||||
Rx, Ry | Input logic level high | 0.58 x VCC | 0.58 x VCC | ||||||
Input threshold | 0.5 x VCC | ||||||||
Input logic level low | 0.42 x VCC | 0.42 x VCC | |||||||
VIOdiff | Input/output logic level difference(1) | Sx, Sy | (VSx output low at 3 mA) – (VSx input high max) for I2C applications | 100 | 150 | 100 | mV | ||
VIOrel | VCC voltage at which all buses are released | Sx, Sy Tx, Ty |
Sx, Sy are low, VCC ramping, voltage on Tx, Ty lowered until released | 1 | 1 | V | |||
ΔV/ΔTREL | Temperature coefficient of release voltage | –4 | mV/°C | ||||||
Cin | Input capacitance | Rx, Ry | 2.5 | 4 | 4 | pF |
PARAMETER | TEST CONDITIONS | TA = 25°C | TA = –40°C to 85°C | UNIT | |||||
---|---|---|---|---|---|---|---|---|---|
MIN | TYP(4) | MAX | MIN | MAX | |||||
ΔV/ΔTIN | Temperature coefficient of input thresholds | Sx, Sy | –2 | mV/°C | |||||
VOL | Low-level output voltage | Sx, Sy | ISx, ISy = 3 mA | 0.8 | 0.88 | 1 | See (5) | V | |
ISx, ISy = 0.2 mA | 0.67 | 0.73 | 0.79 | See (5) | |||||
ΔV/ΔTOUT | Temperature coefficient of output low levels(2) | Sx, Sy | ISx, ISy = 0.2 mA | –1.8 | mV/°C | ||||
ICC | Quiescent supply current | Sx = Sy = VCC | 0.9 | 1.8 | 2 | mA | |||
ΔICC | Additional supply current per pin low | Tx, Ty | 1.7 | 2.75 | 3 | mA | |||
IIOS | Dynamic output sink capability on I2C bus | Sx, Sy | VSx, VSy > 2 V, VRx, VRy = low | 7 | 18 | 6.5 | mA | ||
Leakage current on I2C bus | VSx, VSy = 15 V, VRx, VRy = high | 0.1 | 1 | 1 | μA | ||||
IIOT | Dynamic output sink capability on buffered bus | Tx, Ty | VTx, VTy > 1 V, VSx, VSy = low on I2C bus = 0.4 V |
60 | 100 | 60 | mA | ||
Leakage current on buffered bus | VTx, VTy = VCC = 15 V, VSx, VSy = high | 0.1 | 1 | 1 | μA | ||||
II | Input current from I2C bus | Sx, Sy | Bus low, VRx, VRy = high | –1 | 1 | μA | |||
Input current from buffered bus | Rx, Ry | Bus low, VRx, VRy = 0.4 V | –1 | 1 | |||||
Leakage current on buffered bus input |
VRx, VRy = VCC | 1 | 1.5 | ||||||
VIT | Input threshold | Sx, Sy | Input logic-level high threshold(3) on normal I2C bus | 0.65 | 0.7 | See (5) | V | ||
Input logic-level high threshold(3) on normal I2C bus | 0.6 | 0.65 | See (5) | ||||||
Rx, Ry | Input logic level high | 0.58 x VCC | 0.58 x VCC | ||||||
Input threshold | 0.5 x VCC | ||||||||
Input logic level low | 0.42 x VCC | 0.42 x VCC | |||||||
VIOdiff | Input/output logic level difference(1) | Sx, Sy | (VSx output low at 3 mA) – (VSx input high max) for I2C applications | 100 | 150 | 100 | mV | ||
VIOrel | VCC voltage at which all buses are released | Sx, Sy Tx, Ty |
Sx, Sy are low, VCC ramping, voltage on Tx, Ty lowered until released | 1 | 1 | V | |||
ΔV/ΔTREL | Temperature coefficient of release voltage | –4 | mV/°C | ||||||
Cin | Input capacitance | Rx, Ry | 2.5 | 4 | 4 | pF |
PARAMETER | FROM (INPUT) |
TO (OUTPUT) |
TEST CONDITIONS | TYP | UNIT | |
---|---|---|---|---|---|---|
tpzl | Buffer delay time on falling input | VSx (or VSy) = input switching threshold | VTx (or VTy) output falling 50% of VLOAD(1) | RTx pullup = 160 Ω, CTx = 7 pF + board trace capacitance | 70 | ns |
tplz | Buffer delay time on rising input | VSx (or VSy) = input switching threshold | VTx (or VTy) output reaching 50% of VLOAD(3) | RTx pullup = 160 Ω, CTx = 7 pF + board trace capacitance | 90 | ns |
tpzl | Buffer delay time on falling input | VRx (or VRy) = input switching threshold | VSx (or VSy) output falling 50% of VLOAD(2) | RSx pullup = 1500 Ω, CTx = 7 pF + board trace capacitance | 250 | ns |
tplz | Buffer delay time on rising input | VRx (or VRy) = input switching threshold | VSx (or VSy) output reaching 50% of VLOAD(4) | RSx pullup = 1500 Ω, CTx = 7 pF + board trace capacitance | 270 | ns |