SCPS144C May   2006  – May 2015 P82B96

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics: VCC = 2.3 V to 2.7 V
    6. 7.6  Electrical Characteristics: VCC = 3 V to 3.6 V
    7. 7.7  Electrical Characteristics: VCC = 4.5 V to 5.5 V
    8. 7.8  Electrical Characteristics: VCC = 15 V
    9. 7.9  Switching Characteristics
    10. 7.10 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Sx and Sy
      2. 9.3.2 Tx and Ty
      3. 9.3.3 Long Cable Length
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Calculating System Delays and Bus-Clock Frequency for Fast Mode System
        1. 10.1.1.1 Sample Calculations
    2. 10.2 Typical Applications
      1. 10.2.1 Driving Ribbon or Flat Telephone Cables
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curve
      2. 10.2.2 Galvanic Isolation
      3. 10.2.3 Long-Distance I2C
      4. 10.2.4 Extend I2C/DDC Bus With Short-Circuit Protection
      5. 10.2.5 Voltage Translation
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Community Resources
    2. 13.2 Trademarks
    3. 13.3 Electrostatic Discharge Caution
    4. 13.4 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VCC Supply voltage on VCC pin –0.3 18 V
VI Voltage on buffered input Sx or Sy (SDA or SCL) –0.3 18 V
Rx or Ry –0.3 18
VO Voltage on buffered output Sx or Sy (SDA or SCL) –0.3 18 V
Tx or Ty –0.3 18
IO Continuous output current Sx or Sy 250 mA
Tx or Ty 250
ICC Continuous current through VCC or GND 250 mA
TA Operating free-air temperature –40 85 °C
Tstg Storage temperature –55 125 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human Body Model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±3500 V
Charged-Device Model (CDM), per JEDEC specification JESD22-C101(2) ±1000
Machine Model (MM), per JEDEC specification JESD22-A115-A ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN MAX UNIT
VCC Supply voltage 2 15 V
IOL Low-level output current Sx, Sy VSx, VSy = 1 V, VRx, VRy  ≤ 0.42 V 3 mA
Tx, Ty VSx, VSy = 0.4 V, VTx, VTy = 0.4 V 30
VIOmax Maximum input/output voltage level Sx, Sy VTx, VTy = 0.4 V 15 V
Tx, Ty VSx, VSy = 0.4 V 15
VILdiff Low-level input voltage difference Sx, Sy 0.4 V
TA Operating free-air temperature –40 85 °C

7.4 Thermal Information

THERMAL METRIC(1) P82B96 UNIT
D (SOIC) DGK (VSSOP) P (PDIP) PW (TSSOP)
8 PINS 8 PINS 8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 109.1 174.3 53.5 173.5 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 61.6 63 44.4 57.6 °C/W
RθJB Junction-to-board thermal resistance 48.6 94.2 30.6 101.8 °C/W
ψJT Junction-to-top characterization parameter 19.6 8.1 22.9 5.3 °C/W
ψJB Junction-to-board characterization parameter 48.2 92.8 30.5 100.2 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics: VCC = 2.3 V to 2.7 V

VCC = 2.3 V to 2.7 V, voltages are specified with respect to GND (unless otherwise noted)
PARAMETER TEST
CONDITIONS
TA = 25°C TA = –40°C to 85°C UNIT
MIN TYP(1) MAX MIN MAX
ΔV/ΔTIN Temperature coefficient of input thresholds Sx, Sy –2 mV/°C
VOL Low-level output voltage Sx, Sy ISx, ISy = 3 mA 0.8 0.88 1 See (2) V
ISx, ISy = 0.2 mA 0.67 0.73 0.79 See (2)
ΔV/ΔTOUT Temperature coefficient of output low levels(3) Sx, Sy ISx, ISy = 0.2 mA –1.8 mV/°C
ICC Quiescent supply current Sx = Sy = VCC 0.9 1.8 2 mA
ΔICC Additional supply current per pin low Tx, Ty 1.7 2.75 3 mA
IIOS Dynamic output sink capability on I2C bus Sx, Sy VSx, VSy > 2 V, VRx, VRy = low 7 18 5.5 mA
Leakage current on I2C bus VSx, VSy = 2.5 V, VRx, VRy = high 0.1 1 1 μA
IIOT Dynamic output sink capability on buffered bus Tx, Ty VTx, VTy > 1 V,
VSx, VSy = low on I2C bus = 0.4 V
60 100 60 mA
Leakage current on buffered bus VTx, VTy = VCC = 2.5 V, VSx, VSy = high 0.1 1 1 μA
II Input current from I2C bus Sx, Sy Bus low, VRx, VRy = high –1 1 μA
Input current from buffered bus Rx, Ry Bus low, VRx, VRy = 0.4 V –1 1
Leakage current on buffered bus input VRx, VRy = VCC 1 1.5
VIT Input threshold Sx, Sy Input logic level high threshold(4) on normal I2C bus 0.65 0.7 See (2) V
Input logic level low threshold(4) on normal I2C bus 0.6 0.65 See (2)
Rx, Ry Input logic level high 0.58 x VCC 0.58 x VCC
Input threshold 0.5 x VCC
Input logic level low 0.42 x VCC 0.42 x VCC
VIOdiff Input/output logic level difference(5) Sx, Sy (VSx output low at 3 mA) – (VSx input high max) for I2C applications 100 150 100 mV
VIOrel VCC voltage at which all buses are released Sx, Sy
Tx, Ty
Sx, Sy are low, VCC ramping, voltage on Tx, Ty lowered until released 1 1 V
ΔV/ΔTREL Temperature coefficient of release voltage –4 mV/°C
Cin Input capacitance Rx, Ry 2.5 4 4 pF
(1) Typical value is at VCC = 2.5 V, TA = 25°C
(2) See the Typical Characteristics section of this data sheet.
(3) The output logic low depends on the sink current.
(4) The input logic threshold is independent of the supply voltage.
(5) The minimum value requirement for pullup current, 200 μA, ensures that the minimum value for VSX output low always exceeds the minimum VSx input high level to eliminate any possibility of latching. The specified difference is specified by design within any device. While the tolerances on absolute levels allow a small probability that the low from one Sx output is recognized by an Sx input of another P82B96, this has no consequences for normal applications.

7.6 Electrical Characteristics: VCC = 3 V to 3.6 V

VCC = 3 V to 3.6 V, voltages are specified with respect to GND (unless otherwise noted)
PARAMETER TEST CONDITIONS TA = 25°C TA = –40°C to 85°C UNIT
MIN TYP(1) MAX MIN MAX
ΔV/ΔTIN Temperature coefficient of input thresholds Sx, Sy –2 mV/°C
VOL Low-level output voltage Sx, Sy ISx, ISy = 3 mA 0.8 0.88 1 See (2) V
ISx, ISy = 0.2 mA 0.67 0.73 0.79 See (2)
ΔV/ΔTOUT Temperature coefficient of output low levels(3) Sx, Sy ISx, ISy = 0.2 mA –1.8 mV/°C
ICC Quiescent supply current Sx = Sy = VCC 0.9 1.8 2 mA
ΔICC Additional supply current per pin low Tx, Ty 1.7 2.75 3 mA
IIOS Dynamic output sink capability on I2C bus Sx, Sy VSx, VSy > 2 V, VRx, VRy = low 7 18 5.7 mA
Leakage current on I2C bus VSx, VSy = 5 V, VRx, VRy = high 0.1 1 1 μA
IIOT Dynamic output sink capability on buffered bus Tx, Ty VTx, VTy > 1 V,
VSx, VSy = low on I2C bus = 0.4 V
60 100 60 mA
Leakage current on buffered bus VTx, VTy = VCC = 3.3 V, VSx, VSy = high 0.1 1 1 μA
II Input current from I2C bus Sx, Sy Bus low, VRx, VRy = high –1 1 μA
Input current from buffered bus Rx, Ry Bus low, VRx, VRy = 0.4 V –1 1
Leakage current on buffered bus 
input
VRx, VRy = VCC 1 1.5
VIT Input threshold Sx, Sy Input logic-level high threshold(4) on normal I2C bus 0.65 0.7 See (2) V
Input logic-level low threshold(4) on normal I2C bus 0.6 0.65 See (2)
Rx, Ry Input logic level high 0.58 x VCC 0.58 x VCC
Input threshold 0.5 x VCC
Input logic level low 0.42 x VCC 0.42 x VCC
VIOdiff Input/output logic level difference(4) Sx, Sy (VSx output low at 3 mA) – (VSx input high max) for I2C applications 100 150 100 mV
VIOrel VCC voltage at which all buses are released Sx, Sy
Tx, Ty
Sx, Sy are low, VCC ramping, voltage on Tx, Ty lowered until released 1 1 V
ΔV/ΔTREL Temperature coefficient of release voltage –4 mV/°C
Cin Input capacitance Rx, Ry 2.5 4 4 pF
(1) Typical value is at VCC = 3.3 V, TA = 25°C
(2) See the Typical Characteristics section of this data sheet.
(3) The output logic low depends on the sink current.
(4) The minimum value requirement for pullup current, 200 μA, ensures that the minimum value for VSX output low always exceeds the minimum VSx input high level to eliminate any possibility of latching. The specified difference is specified by design within any device. While the tolerances on absolute levels allow a small probability that the low from one Sx output is recognized by an Sx input of another P82B96, this has no consequences for normal applications.

7.7 Electrical Characteristics: VCC = 4.5 V to 5.5 V

VCC = 4.5 V to 5.5 V, voltages are specified with respect to GND (unless otherwise noted)
PARAMETER TEST CONDITIONS TA = 25°C TA = –40°C to 85°C UNIT
MIN TYP(4) MAX MIN MAX
ΔV/ΔTIN Temperature coefficient of input thresholds Sx, Sy –2 mV/°C
VOL Low-level output voltage Sx, Sy ISx, ISy = 3 mA 0.8 0.88 1  See (5) V
ISx, ISy = 0.2 mA 0.67 0.73 0.79 See (5)
ΔV/ΔTOUT Temperature coefficient of output low levels(2) Sx, Sy ISx, ISy = 0.2 mA –1.8 mV/°C
ICC Quiescent supply current Sx = Sy = VCC 0.9 1.8 2 mA
ΔICC Additional supply current per pin low Tx, Ty 1.7 2.75 3 mA
IIOS Dynamic output sink capability on I2C bus Sx, Sy VSx, VSy > 2 V, VRx, VRy = low 7 18 6 mA
Leakage current on I2C bus VSx, VSy = 5 V, VRx, VRy = high 0.1 1 1 μA
IIOT Dynamic output sink capability on buffered bus Tx, Ty VTx, VTy > 1 V,
VSx, VSy = low on I2C bus = 0.4 V
60 100 60 mA
Leakage current on buffered bus VTx, VTy = VCC = 5 V, VSx, VSy = high 0.1 1 1 μA
II Input current from I2C bus Sx, Sy Bus low, VRx, VRy = high –1 1 μA
Input current from buffered bus Rx, Ry Bus low, VRx, VRy = 0.4 V –1 1
Leakage current on buffered bus 
input
VRx, VRy = VCC 1 1.5
VIT Input threshold Sx, Sy Input logic-level high threshold(3) on normal I2C bus 0.65 0.7 See (5) V
Input logic-level low threshold(3) on normal I2C bus 0.6 0.65 See (5)
Rx, Ry Input logic level high 0.58 x VCC 0.58 x VCC
Input threshold 0.5 x VCC
Input logic level low 0.42 x VCC 0.42 x VCC
VIOdiff Input/output logic level difference(1) Sx, Sy (VSx output low at 3 mA) – (VSx input high max) for I2C applications 100 150 100 mV
VIOrel VCC voltage at which all buses are released Sx, Sy
Tx, Ty
Sx, Sy are low, VCC ramping, voltage on Tx, Ty lowered until released 1 1 V
ΔV/ΔTREL Temperature coefficient of release voltage –4 mV/°C
Cin Input capacitance Rx, Ry 2.5 4 4 pF
(1) The minimum value requirement for pullup current, 200 μA, ensures that the minimum value for VSX output low always exceeds the minimum VSx input high level to eliminate any possibility of latching. The specified difference is specified by design within any device. While the tolerances on absolute levels allow a small probability that the low from one Sx output is recognized by an Sx input of another P82B96, this has no consequences for normal applications.
(2) The output logic low depends on the sink current.
(3) The input logic threshold is independent of the supply voltage.
(4) Typical value is at VCC = 5 V, TA = 25°C
(5) See the Typical Characteristics section of this data sheet.

7.8 Electrical Characteristics: VCC = 15 V

VCC = 15 V, voltages are specified with respect to GND (unless otherwise noted)
PARAMETER TEST CONDITIONS TA = 25°C TA = –40°C to 85°C UNIT
MIN TYP(4) MAX MIN MAX
ΔV/ΔTIN Temperature coefficient of input thresholds Sx, Sy –2 mV/°C
VOL Low-level output voltage Sx, Sy ISx, ISy = 3 mA 0.8 0.88 1  See (5) V
ISx, ISy = 0.2 mA 0.67 0.73 0.79 See (5)
ΔV/ΔTOUT Temperature coefficient of output low levels(2) Sx, Sy ISx, ISy = 0.2 mA –1.8 mV/°C
ICC Quiescent supply current Sx = Sy = VCC 0.9 1.8 2 mA
ΔICC Additional supply current per pin low Tx, Ty 1.7 2.75 3 mA
IIOS Dynamic output sink capability on I2C bus Sx, Sy VSx, VSy > 2 V, VRx, VRy = low 7 18 6.5 mA
Leakage current on I2C bus VSx, VSy = 15 V, VRx, VRy = high 0.1 1 1 μA
IIOT Dynamic output sink capability on buffered bus Tx, Ty VTx, VTy > 1 V,
VSx, VSy = low on I2C bus = 0.4 V
60 100 60 mA
Leakage current on buffered bus VTx, VTy = VCC = 15 V, VSx, VSy = high 0.1 1 1 μA
II Input current from I2C bus Sx, Sy Bus low, VRx, VRy = high –1 1 μA
Input current from buffered bus Rx, Ry Bus low, VRx, VRy = 0.4 V –1 1
Leakage current on buffered bus 
input
VRx, VRy = VCC 1 1.5
VIT Input threshold Sx, Sy Input logic-level high threshold(3) on normal I2C bus 0.65 0.7 See (5) V
Input logic-level high threshold(3) on normal I2C bus 0.6 0.65 See (5)
Rx, Ry Input logic level high 0.58 x VCC 0.58 x VCC
Input threshold 0.5 x VCC
Input logic level low 0.42 x VCC 0.42 x VCC
VIOdiff Input/output logic level difference(1) Sx, Sy (VSx output low at 3 mA) – (VSx input high max) for I2C applications 100 150 100 mV
VIOrel VCC voltage at which all buses are released Sx, Sy
Tx, Ty
Sx, Sy are low, VCC ramping, voltage on Tx, Ty lowered until released 1 1 V
ΔV/ΔTREL Temperature coefficient of release voltage –4 mV/°C
Cin Input capacitance Rx, Ry 2.5 4 4 pF
(1) The minimum value requirement for pullup current, 200 μA, ensures that the minimum value for VSX output low always exceeds the minimum VSx input high level to eliminate any possibility of latching. The specified difference is specified by design within any device. While the tolerances on absolute levels allow a small probability that the low from one Sx output is recognized by an Sx input of another P82B96, this has no consequences for normal applications.
(2) The output logic low depends on the sink current.
(3) The input logic threshold is independent of the supply voltage.
(4) Typical value is at VCC = 15 V, TA = 25°C
(5) See the Typical Characteristics section of this data sheet.

7.9 Switching Characteristics

VCC = 5 V, TA = 25°C, no capacitive loads, voltages are specified with respect to GND (unless otherwise noted)
PARAMETER FROM
(INPUT)
TO
(OUTPUT)
TEST CONDITIONS TYP UNIT
tpzl Buffer delay time on falling input VSx (or VSy) = input switching threshold VTx (or VTy) output falling 50% of VLOAD(1) RTx pullup = 160 Ω, CTx = 7 pF + board trace capacitance 70 ns
tplz Buffer delay time on rising input VSx (or VSy) = input switching threshold VTx (or VTy) output reaching 50% of VLOAD(3) RTx pullup = 160 Ω, CTx = 7 pF + board trace capacitance 90 ns
tpzl Buffer delay time on falling input VRx (or VRy) = input switching threshold VSx (or VSy) output falling 50% of VLOAD(2) RSx pullup = 1500 Ω, CTx = 7 pF + board trace capacitance 250 ns
tplz Buffer delay time on rising input VRx (or VRy) = input switching threshold VSx (or VSy) output reaching 50% of VLOAD(4) RSx pullup = 1500 Ω, CTx = 7 pF + board trace capacitance 270 ns
(1) The fall time of VTx from 5 V to 2.5 V in the test is approximately 15 ns.
(2) The fall time of VSx from 5 V to 2.5 V in the test is approximately 50 ns.
(3) The rise time of VTx from 0 V to 2.5 V in the test is approximately 20 ns.
(4) The rise time of VSx from 0.9 V to 2.5 V in the test is approximately 70 ns.

7.10 Typical Characteristics

P82B96 g_vol_tj_iol02.gif
Figure 1. VOL at Sx vs Junction Temperature, IOL = 0.2 mA
P82B96 g_vil_tj.gif
Figure 3. VIL(max) at Sx vs Junction Temperature
P82B96 g_vcc_tj.gif
Figure 5. VCC(max) vs Junction Temperature
P82B96 g_vol_tj_iol30.gif
Figure 2. VOL at Sx vs Junction Temperature, IOL = 3 mA
P82B96 g_vih_tj.gif
Figure 4. VIH(min) at Sx vs Junction Temperature