SLASEJ4C April   2017  – February 2023 PGA460

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Internal Supply Regulators Characteristics
    6. 6.6  Transducer Driver Characteristics
    7. 6.7  Transducer Receiver Characteristics
    8. 6.8  Analog to Digital Converter Characteristics
    9. 6.9  Digital Signal Processing Characteristics
    10. 6.10 Temperature Sensor Characteristics
    11. 6.11 High-Voltage I/O Characteristics
    12. 6.12 Digital I/O Characteristics
    13. 6.13 EEPROM Characteristics
    14. 6.14 Timing Requirements
    15. 6.15 Switching Characteristics
    16. 6.16 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Power-Supply Block
      2. 7.3.2  Burst Generation
        1. 7.3.2.1 Using Center-Tap Transformer
        2. 7.3.2.2 Direct Drive
        3. 7.3.2.3 Other Configurations
      3. 7.3.3  Analog Front-End
      4. 7.3.4  Digital Signal Processing
        1. 7.3.4.1 Ultrasonic Echo—Band-Pass Filter
        2. 7.3.4.2 Ultrasonic Echo–Rectifier, Peak Hold, Low-Pass Filter, and Data Selection
        3. 7.3.4.3 Ultrasonic Echo—Nonlinear Scaling
        4. 7.3.4.4 Ultrasonic Echo—Threshold Data Assignment
        5. 7.3.4.5 Digital Gain
      5. 7.3.5  System Diagnostics
        1. 7.3.5.1 Device Internal Diagnostics
      6. 7.3.6  Interface Description
        1. 7.3.6.1 Time-Command Interface
          1. 7.3.6.1.1 RUN Commands
          2. 7.3.6.1.2 CONFIGURATION/STATUS Command
        2. 7.3.6.2 USART Interface
          1. 7.3.6.2.1 USART Asynchronous Mode
            1. 7.3.6.2.1.1 Sync Field
            2. 7.3.6.2.1.2 Command Field
            3. 7.3.6.2.1.3 Data Fields
            4. 7.3.6.2.1.4 Checksum Field
            5. 7.3.6.2.1.5 PGA460 UART Commands
            6. 7.3.6.2.1.6 UART Operations
              1. 7.3.6.2.1.6.1 No-Response Operation
              2. 7.3.6.2.1.6.2 Response Operation (All Except Register Read)
              3. 7.3.6.2.1.6.3 Response Operation (Register Read)
            7. 7.3.6.2.1.7 Diagnostic Field
            8. 7.3.6.2.1.8 USART Synchronous Mode
          2. 7.3.6.2.2 One-Wire UART Interface
          3. 7.3.6.2.3 Ultrasonic Object Detection Through UART Operations
        3. 7.3.6.3 In-System IO-Pin Interface Selection
      7. 7.3.7  Echo Data Dump
        1. 7.3.7.1 On-Board Memory Data Store
        2. 7.3.7.2 Direct Data Burst Through USART Synchronous Mode
      8. 7.3.8  Low-Power Mode
        1. 7.3.8.1 Time-Command Interface
        2. 7.3.8.2 UART Interface
      9. 7.3.9  Transducer Time and Temperature Decoupling
        1. 7.3.9.1 Time Decoupling
        2. 7.3.9.2 Temperature Decoupling
      10. 7.3.10 Memory CRC Calculation
      11. 7.3.11 Temperature Sensor and Temperature Data-Path
      12. 7.3.12 TEST Pin Functionality
    4. 7.4 Device Functional Modes
    5. 7.5 Programming
      1. 7.5.1 UART and USART Communication Examples
    6. 7.6 Register Maps
      1. 7.6.1 EEPROM Programming
      2. 7.6.2 Register Map Partitioning and Default Values
      3. 7.6.3 REGMAP Registers
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Transducer Types
    2. 8.2 Typical Applications
      1. 8.2.1 Transformer-Driven Method
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Transducer Driving Voltage
          2. 8.2.1.2.2 Transducer Driving Frequency
          3. 8.2.1.2.3 Transducer Pulse Count
          4. 8.2.1.2.4 Transformer Turns Ratio
          5. 8.2.1.2.5 Transformer Saturation Current and Main Voltage Rating
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Direct-Driven (Transformer-Less) Method
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  9. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Detailed Design Procedure

To begin the design process, determine the following:

  • Transducer
    • Transducer driving voltage
    • Transducer resonant frequency
    • Transducer pulse count
  • Driver
    • Transformer turns ratio
    • Transformer saturation current
    • Transformer main voltage (4-6) rating

#GUID-688B41E5-2969-49B1-AD7E-D3CBC4C17A74/X1017 lists the recommended component values for typical applications.

Table 8-2 Recommended Component Values for Typical Applications
DESIGNATORVALUECOMMENT
R110 Ω (1/2 Watt)Optional (noise reduction)
R2100 Ω(1/2 Watt)Optional (limit in-rush current)
R(INP)3 kΩ (1/4 Watt)Optional (transformer drive only. For EMI/ESD robustness)
L1100 nHOptional (transient suppression)
C1100 nFOptional (Transient suppression)
C2100 nFOptional (transient suppression)
C(INP) GUID-7EF35011-B4D3-46E2-B075-E91F9E123D4C-low.gif
C(INN) GUID-3C7A28AC-8C45-4B0F-BEEB-2D7E1B08D876-low.gif
CTValue depends on transducer and transformer used
D11N4007 or equivalentSchottky diode recommended
D2VZ < 30 VOptional (transient suppression)
D3VBR < 30 VOptional (transient suppression)
XDCRExample devices for low-frequency range:
Closed top for transformer driven: muRata MA58MF14-7N, SensComp 40KPT25
Open top for direct driven: muRata MA40H1S-R, SensComp 40LPT16, Kobitone 255-400PT160-ROX
XFMRExample devices:
TDK EPCOS B78416A2232A003, muRata-Toko N1342DEA-0008BQE=P3, Mitsumi K5-R4
QDECPLOptional (time or temperature decoupling FET)
If no decoupling FET is used, ground the XFMR and CT
Q1
Can be FETs or BJTs as discrete implementation or transistor-array package. Example devices:
Example devices: FDN358P Single FET, MUN5114 single BJT
Ferrite beadBK215HS102-T or equivalentOptional (noise reduction) ). Can be substituted with 0-Ω short.